

Q	Answers	Extra information	Mark	AO	Spec reference
1(a)	An electron moves from level C to level B when the atom absorbs a photon When an electron moves from level B to level C a photon is emitted The energy/frequency of the photon is the same in each case. $(0.92 \times 10^{-19} \text{ J})$		1 1 1	2	4.5.1
(b)	$E = (-8.86 - (-7.94) \times 10^{-19} \text{J}$ = 9.2 × 10 ⁻²⁰ J $E = \frac{hc}{\lambda}, \lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{9.2 \times 10^{-20}}$ = 2.16×10 ⁻⁶ m / 2.2×10 ⁻⁶ m	Correct equation to work out energy Substitution Answer	1 1 1	2	4.5.1
(c)	1 eV = 1.6×10^{-19} J Energy of photon = $1.8 \times 1.6 \times 10^{-19}$ J = 2.89×10^{-19} J $\Delta E = (-8.86 \times 10^{-19}$ J - E) = 2.89×10^{-19} J $E = -5.97 \times 10^{-19}$ J	Energy of photon Substitution Correct value of energy Negative value	1 1 1 1	3	4.5.1
(d)	$\lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2.89 \times 10^{-19}}$ = 6.87×10 ⁻⁷ m/687 nm No, this is in the visible region of the electromagnetic spectrum / red light	Substitution Answer Conclusion	1 1 1	3	4.5.1
2(a)	hf = energy of photon with frequency $f\phi = work function = energy required to remove an electron from the surface ofa metalKE = energy of ejected electron when photon has an energy greater than thework function$		1 1 1	1	4.5.2
(b)	Work function = $4.26 \times 1.6 \times 10^{-19} \text{ J} = 6.82 \times 10^{-19} \text{ J}$	Energy in joules Substitution	1 1	2	4.5.2

Q	Answers	Extra information	Mark	AO	Spec reference
	$E = hf, f = E/h = \frac{6.82 \times 10^{-19}}{6.63 \times 10^{-34}} = 1.02 \times 10^{15} \text{ Hz.}$				
(c)	Difference in energy = $hf - \phi = 4.26 \times 1.6 \times 10^{15} \times 6.63 \times 10^{-34} - 6.82 \times 10^{-19}$ = 2.1×10 ⁻¹⁸ J	Energy	1	2	4.5.2
	$= \frac{1}{2} mv^{2}$ $v = \sqrt{\frac{2 \times 2.1 \times 10^{-19}}{9.11 \times 10^{-31}}}$	Substitution	1		
	$V = \sqrt{\frac{9.11 \times 10^{-31}}{9.11 \times 10^6 \text{ m s}^{-1}}}$ = 2.1(5) × 10 ⁶ m s ⁻¹	Answer	1		
(d)	$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 2.15 \times 10^{6}}$	Substitution ECF	1	2	4.5.3
	$= 3.38 \times 10^{-10} \text{ m}$	Answer	1		
(e)	Yes, the wavelength is the same as the order of magnitude as the spacing of atoms.		1	3	4.5.3
3(a)	The frequency or frequencies of the light emitted is too low		1	1	4.5.2
	The photons hitting the metal interact with surface electrons but do not have enough energy to enable the electrons to escape/the energy of each photon is less than the work function of the metal.		1		
(b)	$E = hf = \frac{hc}{\lambda} = f\theta + KE$	Assumption	1	2	4.5.2
		Assumption Substitution	1		
	Assuming electrons are emitted with zero kinetic energy then $\phi = \frac{hc}{\lambda}$	Answer	1		

Q	Answers	Extra information	Mark	AO	Spec reference
	$=\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{100 \times 10^{-9}} = 1.99 \times 10^{-18} \text{ J}$				
(c)	Some electrons are emitted with kinetic energy, so the figure calculated in 2(b) is bigger than the actual value of the work function.	Statement e.c.f.	1	2	4.5.2
	$4 \text{ eV} = 4 \times 1.6 \times 10^{-19} = 6.4 \times 10^{-19} \text{ J} < 1.99 \times 10^{-18} \text{ J}$	Use of numbers	1		
(d)	$E = hf = \frac{hc}{\lambda} = \phi + KE$	Calculation of energy	1	2	4.5.2
	$KE = \frac{hc}{\lambda} - \phi = 1.99 \times 10^{-18} - 6.4 \times 10^{-19} \text{ J} = 1.35 \times 10^{-18} \text{ J}$	Substitution	1		
	$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 1.35 \times 10^{-18}}{9.11 \times 10^{-31}}}$ $= 1.7 \times 10^{6} \text{ m s}^{-1}$	Answer	1		
4(a)		Positive relationship (straight or curved)	1	3	4.5.2
	current intensity	Correctly labelled axes	1		
(b)	Yes, more intense radiation transfers more energy per second, releasing more electrons per second, producing more current.		1	3	4.5.2

Q	Answers	Extra information	Mark	AO	Spec reference
(c)	The power supply can be turned around So that the potential can be applied so as to stop the electrons = stopping potential		1 1	2	4.5.2
(d)	$eV_{\text{stopping}} = \frac{1}{2} mv^2 = hf - \phi$ $\phi = hf - eV_{\text{stopping}}$ $= (6.63 \times 10^{-34} \times 6.00 \times 10^{14}) - (1.60 \times 10^{-19} \times 0.5)$ $= 3.97 \times 10^{-19} - 0.8 \times 10^{-19}$ $= 3.17 \times 10^{-19} \text{ J}$	Use of equation Substitution of one pair of numbers Answer	1 1 1	2	4.5.2
(e)	It would not be affected The potential indicates the energy of the electrons released, which depends on the frequency and not the intensity/the intensity affects the number of electrons emitted at a particular frequency.		1 1	3	4.5.2
5(a)	 Level 3 (5–6 marks) Clear explanation of method with description of circuit and components used and clear analysis The student presents relevant information coherently, employing structure, style and SP&G to render meaning clear. Level 2 (3–4 marks) Some explanation of method and either some components or some analysis explained. The student presents relevant information and in a way which assists the communication of meaning. SP&G are sufficiently accurate not to obscure meaning. Level 1 (1–2 marks) Limited explanation and description or limited analysis. The student presents some relevant information in a simple form. SP&G allow meaning to be derived although errors are sometimes obstructive. 0 marks No response or no response worthy of credit.	 Indicative scientific points may include: Method: Connect a LED to a variable power supply. Use a protective resistor. Connect a voltmeter across the LED, not the resistor. Observe the LED by looking down a tube. Increase the p.d. across the LED until it just glows Record the reading on the voltmeter. Repeat 3 times and take an average. Repeat with different coloured LED Analysis: Record the wavelength using 	Max 6	1	4.5.1

Q	Answers	Extra information	Mark	AO	Spec reference
		specification. Calculate the frequency for each colour using $f = v/\lambda$			
(b)	3	Lines of max and min gradient	2	3	4.5.1
	potential difference (<i>V</i>) $1.5 + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	Two gradients calculated	1		
(c)	When the LED just lights $eV = hf$	Correct equations	1	2	4.5.1
	A graph of $V vs f$ has a gradient of h/e	Value of gradient	1		
	<i>h</i> = gradient × e = 6.9×10 ⁻¹⁵ V s × 1.6×10 ⁻¹⁹ = 1.1×10 ⁻³³ J s	Two values of <i>h</i>	1		
	<i>h</i> = gradient × <i>e</i> = 3.4×10 ⁻¹⁵ V s × 1.6×10 ⁻¹⁹ = 5.4×10 ⁻³⁴ J s				
	Planck's constant = (1.1×10 ⁻³³ + 5.4×10 ⁻³⁴)/2 = 8.2×10 ⁻³⁴ J s		1		
	Value = 8.2 \pm 2.8×10 ⁻³⁴ J s		1		
(d)	It is very difficult to judge when the LED has just lit/ the eye is limited as an instrument to see when the LED just lights up		1	2	4.5.1
6(a)	$eV = \frac{\gamma_2}{mv^2}$	Equating energy to find mv	1	2	4.5.3
	$mv = \sqrt{2meV}$		1		

Q	Answers	Extra information	Mark	AO	Spec reference
	$\lambda = \frac{h}{m\nu}$	Expression for λ , explicit or implied Answer	1		
	$=\frac{h}{\sqrt{2meV}}$				
	$=\frac{6.63\times10^{-34}}{\sqrt{2\times9.11\times10^{-31}\times1.60\times10^{-19}\times3000}}$				
	$= 2.24 \times 10^{-11} \text{ m}$				
(b)	Assuming the diffraction obeys the equation for diffraction: Or assume that for appreciable diffraction the size of the grating spacing/aperture	Clear assumption	1	3	4.4.3
	Grating spacing for electrons is approximately 10 ⁻¹⁰ m.				
	$n\lambda = d \sin \theta$	Grating spacing for electrons	1		
	If the angles are the same, assuming $n = 1$	Relationship between wavelength			
	$\left(\frac{\lambda}{d}\right)_{\text{visible}} = \left(\frac{\lambda}{d}\right)_{\text{electrons}}$	and spacing	1		
	$d_{\text{visible}} = \lambda_{\text{visible}} \left(\frac{\mathrm{d}}{\lambda}\right)_{\text{electrons}}$	Answer			
	$= 540 \times 10^{-9} \times 10^{-10} / 2.24 \times 10^{-11}$		1		
	= 2.4×10 ⁻⁶ m				
(c)	The wavelength is larger		1	3	4.4.3
	so the angle at which maxima are observed will be larger, so the pattern will spread out		1		
(d)	The wavelength of the electrons is inversely proportional to the potential difference used to accelerate the electrons		1	3	4.4.3
	To increase the wavelength for the electrons the potential difference will need to be reduced		1		

Q	Answers	Extra information	Mark	AO	Spec reference
(e)	$R = R_0 A^{1/3}$		1	2	6.4.1
	$A = \left(\frac{1}{R_0}\right)$	Substitution	1		
	$= \left(\frac{6.6 \times 10^{-15}}{1.1 \times 10^{-15}}\right)^{3}$ = 216	Answer	1		
7(a)	Number of protons = 88 Number of neutrons = 138		1	2	6.4.1
(b)	${}^{226}_{88}Ra \rightarrow {}^{222}_{86}Rn + {}^{4}_{2}\alpha$	Symbol for alpha A and Z for Rn	1	2	6.4.3
(c)	$E = hf = \frac{hc}{\lambda} = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{532 \times 10^{-9}} = 3.74 \times 10^{-19} \mathrm{J}$			2	4.5.1
	$=\frac{3.74 \times 10^{-19} \text{ J}}{1.6 \times 10^{-19} \text{ J}} = 2.34 \text{ eV}$				
(d)	Suggested mechanism e.g. The alpha particle collides with an atom in the paint. An electron is excited to a higher energy level, and emits a photon when it returns to its ground state.	Collision producing excitation Emission of photon	1	3	4.5.1
8(a)	The largest energy gap gives the highest frequency photon, which would be the smallest wavelength	Reasoning	1	3	4.5.1
	K _{beta}	Answer	1		

Q	Answers	Extra information	Mark	AO	Spec reference
(b)	Bones contain elements that have energy levels with differences that correspond to the energy of X-ray photons		1	3	4.5.1
(c)	Power = $V \times I$			2	4.2.5
	$= 52 \times 10^3 \times 41 \times 10^{-3}$	Substitution	1		
	= 2132 W ≈ 2100 W	Answer	1		
(d)	Energy required = mL			3	3.3.3
	$= 15 \times 10^{-3} \times 247 \times 10^{3} \text{ J} = 3.71 \times 10^{3} \text{ J}$	Energy	1		
	Power = energy/time, time = energy/power = 3.71×10 ³ J/2100 W	Substitution	1		
	= 1.7(4) seconds	Answer	1		
(e)	The specific heat capacity of water is bigger/2.5 times bigger, so that it will require more energy to raise the temperature by 1 K / lower increase in		1	3	5.1.3
	temperaeture for the same amount of energy Less water needs to flow per second to cool the anode		1		