

Question	Answers	Extra information	Mark	AO	Spec reference
1(a)	one with a constant/fixed phase relationship/difference		1	1	4.4.3
(b)	one with a single wavelength/frequency		1	1	4.4.3
(c)	do not look directly at laser / do not point laser at anyone / do not look at reflection of laser light / wear safety goggles	allow any sensible suggestion	1	1	4.4.3g
(d)	$x = \frac{8 \times 10^{-3} \text{ m}}{4} = 2 \times 10^{-3} \text{ m}$ $x = \frac{\lambda D}{a}$		1 1 1	2	4.4.3g
	$\lambda = \frac{ax}{D} = \frac{2 \times 10^{-3} \times 0.4 \times 10^{-3}}{1.5}$ $\lambda = 5.3 \times 10^{-7} \text{ m}$				
(e)	% uncertainty in $D = \frac{0.001}{1.5} \times 100\% = 0.07\%$		1	2	2.2.1c
	% uncertainty in $a = \frac{0.01}{0.40} \times 100\% = 2.5\%$ % uncertainty in $x = \frac{0.1}{8.0} \times 100\% = 1.3\%$		1		
	% uncertainty in $\lambda = 0.07 + 2.5 + 1.3 = 3.9\%$				
(f)	<i>a</i> and <i>D</i> remain constant so $\lambda \propto x$	can be expressed in words but must state s and D constant for this mark	1	2	4.4.3g
	longer λ means the maxima would be further apart		1		
2(a)	$n \sin \theta$ = constant		1	2	4.4.2d

Question	Answers	Extra information	Mark	AO	Spec reference
	$n_1 \sin \theta_1 = n_2 \sin \theta_2$ remember $n_1 = 1$				
	$\sin \theta_2 = \frac{\sin \theta_1}{n_1} = \frac{\sin 60}{1.5}$		1		
	$\theta_2 = 35^{\circ}$				
(b)	$\sin C = \frac{1}{1.5}$		1	2	4.4.2d
	<i>C</i> = 42 (41.8°)				
(c)	angle of incidence side KL = 55°	could be shown on sketch on the	1	3	4.4.2.d
	since this is > than critical angle ray is totally internally reflected.	diagram	1		
(d)	1.5 sin <i>C</i> = 1.4 sin 90		1	3	4.4.2.d
	$\sin C = \frac{1.4}{1.5}$		1		
	<i>C</i> = 69°				
3(a)	2.8 cm		1	2	4.4.1b
(b)	$\lambda = 2.8 \text{ cm } c = 8.4 \text{ cm s}^{-1}$	allow ECF for λ answer from part (a)		2	4.4.1d
	$c = f\lambda$		1		
	$f = \frac{c}{\lambda} = \frac{8.4}{2.8} = 3$ Hz		1		
(c)	$\frac{\pi}{2}$ rad or 90 °		1	2	4.4.1b
(d)			1	2	4.4.1b
	displacement will be negative (downwards) to max in $\frac{T}{4}$ s		1		

Question	Answers	Extra information	Mark	AO	Spec reference
	decreases through to zero displacement at $\frac{T}{2}$ s				
4(a)	 place the diffraction grating at a distance of 4 m (must be > 1 m) from a screen measure with a metre ruler or tape measure. shine laser directly onto grating. (Identify the central maxima) and measure the distance the first-order maxima either side with a ruler and find the mean (or measure distance between 1st order and divide by 2) 		max 3	1	4.4.3g
(b)	$\frac{1 \times 10^{-3} \mathrm{m}}{330} = 3.0 \times 10^{-6} \mathrm{m}^{-1}$		1	2	5.5.3g
(c)	$n\lambda = d \sin \theta$ $\lambda = 3.0 \times 10^{-6} \sin 12.5 = 6.5 \times 10^{-7} \text{ m}$ $\lambda = 650 \text{ nm} (649 \text{ nm})$	ECF	1 1	2	5.5.3g
(d)	central white maxima each of the orders is now a spectrum violet closest to the centre/red furthest from centre $\lambda \propto \theta$ so as λ increases so does θ at higher orders colours mix so ROYGBIV spectrum not seen		3 max	3	5.5.3g
5(a)	In unpolarised light the oscillations are in many planes in plane polarised light the oscillations are in one plane only.		1 1	1	4.4.1f 4.4.2c
(b)	Reflected light is polarised so intensity of light reflected on water will be reduced by polarising filter.		1 1	2	4.4.1f 4.4.2c
(c)	rotate the polarising filter through 180°/360° variation in intensity between max and min (or light and dark) one maxima and min in180°		1 1	2	4.4.1f 4.4.2c

Question	Answers	Extra information	Mark	AO	Spec reference
	OR two maxima (or two minima) in 360° rotation		1		
(d)	sound waves are longitudinal waves since oscillations are parallel to/same direction as wave travel they cannot be polarised.		1 1	2	4.4.1a 4.4.2c
6(a)	reflection from metal plate two waves of the same frequency/wavelength travelling in opposite directions (or forward/reflected waves) maxima where waves are in phase or interfere constructively minima where waves are out of phase/antiphase or interfere destructively nodes and antinodes are formed or stationary waves identified	any 3 awarded	max 3	1	4.4.3 and 4.4.4
(b)	distance between minima is $\frac{\lambda}{2}$ $4 \times \frac{\lambda}{2} = 54$ mm $\lambda = 27$ mm		1	2	4.4.4f
(c)	$c = f\lambda$ and $c = 3.0 \times 10^8$ m s ⁻¹ $f \frac{c}{\lambda} = \frac{3.0 \times 10^8}{27 \times 10^{-3}} = 1.1 \times 10^{10}$ Hz 11 GHz	allow ECF from part (b)	1 1	2	4.4.1
(d)	P labelled close to the plate in direct line with transmitter		1	2	
(e)	The distance travelled by the transmitted wave and the reflected wave is similar at point <i>P</i> . The amplitude of both waves will be similar. Max destructive interference	max of two marks	max 2	2	4.4.3 4.4.4

Question	Answers	Extra information	Mark	AO	Spec reference
(f)	The microwave transmitter produces plane polarised waves and so the detector has to be in the correct plane.		1	3	4.4.1f 4.4.2c
7(a)	1.35 sin C = 1.30 sin 90 sin C = $\frac{1.30}{1.35}$ C = 74° (74.4°)		1	2	4.4.2d
(b)	 ray is reflected at A or travels from A to B to C interference or superposition of the two rays bright fringes constructive interference, dark fringes destructive interference if the path difference = nλ constructive interference occurs (bright fringe) if path difference = (n + 1/2)λ (ordestructive interference (dark fringe) 	Allow wtte	max 3	3	4.4.3
(c)	different colours of white light have different wavelengths constructive/destructive interference will happen for different thicknesses of oil different wavelengths refracted differently		max 2	3	4.4.2
8(a)	80 (ms) $f = \frac{1}{T} = 12.5 \text{ Hz}$ $f^2 = 156 \text{ Hz}$	answer in table row should be completed	1	2	4.4.1b 4.4.1c
(b)	T = mg $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$		1	2	3.2.1c

Question	Answers	Extra information	Mark	AO	Spec reference
	$=\frac{1}{2l}\sqrt{\frac{mg}{\mu}}$		1		
	$f^2 = \frac{1}{4l^2} \times \frac{mg}{\mu}$ since <i>l</i> , <i>g</i> , and μ are constant				
	$f^2 \propto m$				
(c)	mark for plotting point \pm 0.5 square on graph		1	2	1.1.3d
	mark for drawing line of best fit		1		
	large triangle drawn or evidence shown 1.2 ± 0.1 (Hz² g⁻¹)		1		
(d)	gradient = $\frac{4l^2\mu}{g}$		1	2	1.1.3d
	$\mu = \frac{9.81 \times 1.2}{4 \times 1^2}$ 3.0 g m ⁻¹		1		
(e)	% uncertainty in length = $\frac{0.001}{1.00}$ × 100% = 0.1%	1 mark for calculating either % uncertainty	1	2	2.2.1d
	or % uncertainty in mass = $\frac{0.1}{1.7} \times 100\% = 5.9\%$		1 1		
	total % error = 6.0%				
	absolute error = $0.06 \times 1.7 = \pm 0.1 \text{ g m}^{-1}$				

Question	Answers	Extra information	Mark	AO	Spec reference
(f)	% difference = $\frac{\text{difference}}{\text{actual}} \times 100\%$	possible ecf from their value for part (d)	1	2	2.2.1c
	% difference = $\frac{1.3}{1.7} \times 100\% = 76\%$				