

Question	Answers	Extra information	Mark	AO spec reference
1(a)	R = V/I	Must be written to 3 s.f.	1	4.2.3
	7.00 to be seen either on the table or by the question			AO1
(b)	± 0.01 A		1	2.2.1
				AO1
(c)	Point plotted to within 1/2 a small square		1	1.1.3
	suitable line of best fit drawn.		1	AO1
(d)	Systematic error	Allow any sensible source of	1	2.2.1
	resistance of connecting wires	systematic error	1	AO2
	or			
	Error in measuring length introduced by crocodile clips			
(e)	Large triangle seen or suitable data points from line of best fit	MUST NOT be data from table	1	1.1.3
	Gradient = 13.5 ± 0.5			AO1
			1	
(f)	Cross-sectional area of wire = π (0.11×10 ⁻³) ² = 3.8×10 ⁻⁸ m ²	Ignore errors in powers of 10 for this	1	4.2.4
	Use of $R = \rho l/A$ to give gradient = ρ/A	mark	1	AO3
	$ \rho = 13.5 \times 3.8 \times 10^{-8} = 5.1 \times 10^{-7} $ (Ω m)	gradient	1	
(g)	% difference = (5.1×10 ⁻⁷ - 4.9×10 ⁻⁷)/4.9×10 ⁻⁷	Allow justification for any sensible	1	2.2.1
	% difference = 4%	comment		AO2
	This data is accurate as below 10% difference		1	
2(a)	The current flowing into a junction must equal the current flowing out of the junction / Kirchhoff's first law (wtte)		1	4.1.1
				AO1
(b)	The sum of the pds in a closed loop must equal the sum of emfs in that		1	4.3.1
	loop / Kirchhoff's second law (wtte)			AO1
(c)	Bulbs in series so same current flows into each		1	4.2.5

Question	Answers	Extra information	Mark	AO spec reference
	Use of or mention $P = I^2 R$ (or $P = VI$ or $P = V^2/R$)		1	4.3.1
	since I constant $P \propto R$ so A must have greater resistance		1	AO2
(d)	Bulbs in parallel so this time pd the same.	If they think B has the higher resistance then allow e.c.f. if correct reasoning applied	1	4.2.5
	$P = V^2 / R$			4.3.1
	since V constant $P \propto 1/R$		1	AO2
	Bulb B brightest		1	
3(a)	X is a (fixed)resistor		1	4.2.3
	The resistance is constant the voltage and current are directly proportional		1	AO1
	Y is a filament lamp			
	The resistance increases with increasing voltage / current / as temperature		1	
			1	
(b)	R = V/I	Must not draw a tangent here	1	4.2.3
	$R = 5.0/0.3 = 16.7 \ \Omega$		1	AO2
(c)	pd across Y = 2.5 V (read from graph)	Can also solve by determining	1	4.2.3
	pd across X = 5.0 V (read from graph)	resistance of each bulb with that		4.3.1
	Emf = 7.5 V	multiplying resistance by current.	1	AO2
(d)	Current in Y = 0.30 A (read from graph)		1	4.2.3
	Current in X = 0.20 A (read from graph)			4.3.1
	Total current = 0.50 A		1	AO2
4(a)	Area of 1 strand of cable = $\pi r^2 = \pi (1.665 \times 10^{-3})^2$		1	4.2.4
	For 1 strand $R = \rho l/A = 2.82 \times 10^{-8} \times 1000 / \pi (1.665 \times 10^{-3})^2$			4.3.1
	$R = 3.2 \Omega$		1	AO2
	Therefore for cable			
	$1/R_{\rm T} = 27 \ (1/R_1)$			

Question	Answers	Extra information	Mark	AO spec reference
	$R_{\rm T}$ = 0.12 Ω		1	
(b)	<i>R</i> of 1 m = 0.12/1000 = 1.2×10^{-4} Ω or use of <i>P</i> = $I^2 R$ $I^2 = P/R = 500$ A	Allow ecf from answer to 4(a)	1 1	4.2.5 AO3
(c)	I = nAve $v = I/Ane = 500/\pi (1.665 \times 10^{-3})^2 \times 2.8 \times 10^{29} \times 1.6 \times 10^{-19}$	possible ecf from 4(b)	1	4.1.2 AO2
(d)	$v = 1.3 \times 10^{-5} \text{ m s}^{-1}$ $t = D/v = 1000/1.3 \times 10^{-3} = 7.7 \times 10^{5} \text{ s} = 210 \text{ hours}$		1	3.1.1 AO1
5(a)	$W = Vq = 200 \times 1.6 \times 10^{-19} = 3.2 \times 10^{-17} \text{ J}$		1	4.2.2 AO1
(b)	3.2×10 ^{−17} J		1	4.2.2 AO1
(c)	$E = \frac{1}{2} mv^2$ and $p = mv$ $E = mv^2/2 \times m/m$ (or any other sensible explanation) $E = p^2/2m$ can be rearranged to give		1	3.5.1 3.3.2 AO2
(d)	$\lambda = h/p$ $\lambda = h/\sqrt{2mKE}$ $\lambda = 6.63 \times 10^{-34} / \sqrt{2 \times 9.11 \times 10^{-31} \times 3.2 \times 10^{-17}}$ $\lambda = 8.7 \times 10^{-11} \text{ m}$		1	4.5.3 AO3
6(a)	Axes labelled – resistance y axis and length /cm x axis R changing and not constant		1 1 1	4.2.4 1.1.3 AO2

Question	Answers	Extra information	Mark	AO spec reference
	Graph will be an inverse of shape on paper – when area large resistance small and vice versa			
(b)	Resistivity is constant for a material resistance depends on the length/cross-sectional/resistivity area of the sample		1 1	4.2.4 AO2
(c)	Measurements of pd and current can be used to determine resistance or $R = V/I$		1	4.2.3 AO2
(d)	Any sensible suggestion: Wall would have higher resistance than surrounding soil so would show up/well would have concentration of water lower resistance/changes in water content would show up/broken crockery make change resistivity of soil	1 for what meter would measure, 1 for how that's useful	1	4.2.4 AO3
7(a)	Diode (LED) The component only conducts once you are above the threshold voltage/a certain voltage/2.6 V		1 1	4.2.3 AO1
(b)	Circuit diagram using a potential divider arrangement Voltmeter in parallel and ammeter in series with component correct diode symbol used	Lose mark if use of variable resistor	1 1 1	4.2.3 AO1
(c)	Infinite/allow very large		1	4.2.3 AO1
(d)	use of $R = V/I$ $R = 4/0.020 \text{ A} = 200 \Omega$	ignore powers of 10 for this mark	1	4.2.3 AO2
8(a)	$P = V^2 / R$ $R = V^2 / P = 12^2 / 50 = 2.9 \Omega$		1 1	4.2.5 AO1

Question	Answers	Extra information	Mark	AO spec reference
(b)	$1/R = 1/R_1 + 1/R_2 + 1/R_3$		1	4.3.1
	1/2.9 = 8/R			AO2
	$R = 8 \times 22.9 = 23.2$ (23.0 if you use unrounded number)		1	
(c)	$R = \rho l / A$		1	4.2.4
	$A = \rho l/R$			AO2
	$A = d \times 0.003 \text{ m}$			
	$d = 1.1 \times 10^{-5} \times 0.75/23 \times 0.003 = 0.12 \text{ mm}$		1	
(d)(i)	5 μΩ cm = 5×10^{-6} cm = 5×10^{-8} m		1	4.2.4
				AO2
(ii)	The thickness of the paint is the same as the thickness of the strips that		1	4.2.4
	was calculated in part 8(c) .			AO3
(e)	This 1 cm strip will have a much lower resistance $R \propto \rho$		1	4.2.4
	But the strip is 75 cm long so will not affect overall resistance.			AO3
			1	