A Level OCR Physics

Chapter 11 Energy, power, and resistance

Question	Answers	Extra information	Mark	AO spec reference
1(a)	$R=V / I$ 7.00 to be seen either on the table or by the question	Must be written to 3 s.f.	1	$\begin{aligned} & 4.2 .3 \\ & \text { AO1 } \end{aligned}$
(b)	$\pm 0.01 \mathrm{~A}$		1	$\begin{aligned} & 2.2 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(c)	Point plotted to within $1 / 2$ a small square suitable line of best fit drawn.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.1 .3 \\ & \mathrm{AO} 1 \end{aligned}$
(d)	Systematic error resistance of connecting wires or Error in measuring length introduced by crocodile clips	Allow any sensible source of systematic error	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.2 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(e)	Large triangle seen or suitable data points from line of best fit Gradient $=13.5 \pm 0.5$	MUST NOT be data from table	1 1	$\begin{aligned} & 1.1 .3 \\ & \mathrm{AO} 1 \end{aligned}$
(f)	$\begin{aligned} & \text { Cross-sectional area of wire }=\pi\left(0.11 \times 10^{-3}\right)^{2}=3.8 \times 10^{-8} \mathrm{~m}^{2} \\ & \text { Use of } R=\rho l / A \text { to give gradient }=\rho / A \\ & \rho=13.5 \times 3.8 \times 10^{-8}=5.1 \times 10^{-7}(\Omega \mathrm{~m}) \end{aligned}$	Ignore errors in powers of 10 for this mark poss error carried forward from gradient	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 3 \end{gathered}$
(g)	$\begin{aligned} & \% \text { difference }=\left(5.1 \times 10^{-7}-4.9 \times 10^{-7}\right) / 4.9 \times 10^{-7} \\ & \% \text { difference }=4 \% \\ & \text { This data is accurate as below } 10 \% \text { difference } \end{aligned}$	Allow justification for any sensible comment	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.2 .1 \\ & \mathrm{AO} 2 \end{aligned}$
2(a)	The current flowing into a junction must equal the current flowing out of the junction / Kirchhoff's first law (wtte)		1	$\begin{aligned} & \text { 4.1.1 } \\ & \text { AO1 } \end{aligned}$
(b)	The sum of the pds in a closed loop must equal the sum of emfs in that loop / Kirchhoff's second law (wtte)		1	$\begin{aligned} & 4.3 .1 \\ & \text { AO1 } \end{aligned}$
(c)	Bulbs in series so same current flows into each		1	4.2.5

A Level OCR Physics

Chapter 11 Energy, power, and resistance

Question	Answers	Extra information	Mark	AO spec reference
	Use of or mention $P=I^{2} R$ (or $P=V I$ or $P=V^{2} / R$) since I constant $P \propto R$ so A must have greater resistance		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Bulbs in parallel so this time pd the same. $P=V^{2} / R$ since V constant $P \propto 1 / R$ Bulb B brightest	If they think B has the higher resistance then allow e.c.f. if correct reasoning applied	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .5 \\ & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$
3(a)	X is a (fixed) resistor The resistance is constant the voltage and current are directly proportional Y is a filament lamp The resistance increases with increasing voltage / current / as temperature increases resistance increases		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .3 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$\begin{aligned} & R=V I I \\ & R=5.0 / 0.3=16.7 \Omega \end{aligned}$	Must not draw a tangent here	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	```pd across Y = 2.5 V (read from graph) pd across X = 5.0 V (read from graph) Emf = 7.5 V```	Can also solve by determining resistance of each bulb with that current and calculating V by multiplying resistance by current.	1 1	$\begin{aligned} & 4.2 .3 \\ & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$\begin{aligned} & \text { Current in } Y=0.30 \mathrm{~A} \text { (read from graph) } \\ & \text { Current in } \mathrm{X}=0.20 \mathrm{~A} \text { (read from graph) } \\ & \text { Total current }=0.50 \mathrm{~A} \end{aligned}$		1 1	$\begin{aligned} & 4.2 .3 \\ & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$
4(a)	Area of 1 strand of cable $=\pi r^{2}=\pi\left(1.665 \times 10^{-3}\right)^{2}$ For 1 strand $R=\rho l / A=2.82 \times 10^{-8} \times 1000 / \pi\left(1.665 \times 10^{-3}\right)^{2}$ $R=3.2 \Omega$ Therefore for cable $1 / R_{\mathrm{T}}=27\left(1 / R_{1}\right)$		1 1	$\begin{aligned} & 4.2 .4 \\ & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 11 Energy, power, and resistance

Question	Answers	Extra information	Mark	AO spec reference
	$R_{\mathrm{T}}=0.12 \Omega$		1	
(b)	$\begin{aligned} & R \text { of } 1 \mathrm{~m}=0.12 / 1000=1.2 \times 10^{-4} \Omega \text { or use of } P=I^{2} R \\ & I^{2}=P / R=500 \mathrm{~A} \end{aligned}$	Allow ecf from answer to 4(a)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .5 \\ & \text { AO3 } \end{aligned}$
(c)	$\begin{aligned} & I=\text { nAve } \\ & v=I / \text { Ane }=500 / \pi\left(1.665 \times 10^{-3}\right)^{2} \times 2.8 \times 10^{29} \times 1.6 \times 10^{-19} \\ & v=1.3 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	possible ecf from 4(b)	1 1	$\begin{aligned} & 4.1 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$t=D / v=1000 / 1.3 \times 10^{-3}=7.7 \times 10^{5} \mathrm{~s}=210$ hours		1	3.1.1 AO1
5(a)	$W=V q=200 \times 1.6 \times 10^{-19}=3.2 \times 10^{-17} \mathrm{~J}$		1	$\begin{aligned} & 4.2 .2 \\ & \text { AO1 } \end{aligned}$
(b)	$3.2 \times 10^{-17} \mathrm{~J}$		1	$\begin{aligned} & 4.2 .2 \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & E=1 / 2 m v^{2} \text { and } p=m v \\ & E=m v^{2} / 2 \times m / m \quad \text { (or } \\ & E=p^{2} / 2 m \end{aligned}$ $E=m v^{2} / 2 \times m / m \quad \text { (or any other sensible explanation) }$ can be rearranged to give ...		1	$\begin{aligned} & 3.5 .1 \\ & 3.3 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$\begin{aligned} & \lambda=h / p \\ & \lambda=h / \sqrt{2 m K E} \\ & \lambda=6.63 \times 10^{-34} / \sqrt{2 \times 9.11 \times 10^{-31} \times 3.2 \times 10^{-17}} \\ & \lambda=8.7 \times 10^{-11} \mathrm{~m} \end{aligned}$		1 1	$\begin{aligned} & 4.5 .3 \\ & \text { AO3 } \end{aligned}$
6(a)	Axes labelled - resistance y axis and length /cm x axis R changing and not constant		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .4 \\ & 1.1 .3 \\ & \mathrm{AO} 2 \\ & \hline \end{aligned}$

A Level OCR Physics

Chapter 11 Energy, power, and resistance

Question	Answers	Extra information	Mark	AO spec reference
	Graph will be an inverse of shape on paper - when area large resistance small and vice versa			
(b)	Resistivity is constant for a material resistance depends on the length/cross-sectional/resistivity area of the sample		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 2 \end{gathered}$
(c)	Measurements of pd and current can be used to determine resistance or $R=V I I$		1	$\begin{aligned} & 4.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Any sensible suggestion: Wall would have higher resistance than surrounding soil so would show up/well would have concentration of water lower resistance/changes in water content would show up/broken crockery make change resistivity of soil	1 for what meter would measure, 1 for how that's useful	1 1	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 3 \end{gathered}$
7(a)	Diode (LED) The component only conducts once you are above the threshold voltage/a certain voltage/2.6 V		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .3 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	Circuit diagram using a potential divider arrangement Voltmeter in parallel and ammeter in series with component correct diode symbol used	Lose mark if use of variable resistor	1 1 1	$\begin{aligned} & 4.2 .3 \\ & \text { AO1 } \end{aligned}$
(c)	Infinite/allow very large		1	4.2.3 AO1
(d)	$\begin{aligned} & \text { use of } R=V I I \\ & R=4 / 0.020 A=200 \Omega \end{aligned}$	ignore powers of 10 for this mark	1	$\begin{aligned} & 4.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
8(a)	$\begin{aligned} & P=V^{2} / R \\ & R=V^{2} / P=12^{2} / 50=2.9 \Omega \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .5 \\ & \mathrm{AO} 1 \end{aligned}$

A Level OCR Physics

Chapter 11 Energy, power, and resistance

Question	Answers	Extra information	Mark	AO spec reference
(b)	$\begin{aligned} & 1 / R=1 / R_{1}+1 / R_{2}+1 / R_{3} \\ & 1 / 2.9=8 / R \\ & R=8 \times 22.9=23.2(23.0 \text { if you use unrounded number }) \end{aligned}$		1 1	$\begin{aligned} & 4.3 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} R & =\rho / l A \\ A & =\rho l / R \\ A & =d \times 0.003 \mathrm{~m} \\ d & =1.1 \times 10^{-5} \times 0.75 / 23 \times 0.003=0.12 \mathrm{~mm} \end{aligned}$		1 1	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 2 \end{gathered}$
(d)(i)	$5 \mu \Omega \mathrm{~cm}=5 \times 10^{-6} \mathrm{~cm}=5 \times 10^{-8} \mathrm{~m}$		1	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 2 \end{gathered}$
(ii)	The thickness of the paint is the same as the thickness of the strips that was calculated in part 8(c).		1	$\begin{aligned} & 4.2 .4 \\ & \text { AO3 } \end{aligned}$
(e)	This 1 cm strip will have a much lower resistance $R \propto \rho$ But the strip is 75 cm long so will not affect overall resistance.		1 1	$\begin{gathered} 4.2 .4 \\ \mathrm{AO} 3 \end{gathered}$

