

Question	Answers	Extra information	Mark	AO Spec reference
1(a)(i)	ions		1	4.1.1 AO1
(ii)	electrons		1	4.1.1 AO1
(b)	P = E/t $E = Pt$ or time = 2 × 60 × 60 = 7200 s $E = 36 \times 7200 = 2.6 \times 10^4 \text{ J}$	any for first mark	1 1	3.3.3 AO1
(c)	Q = It P = VI I = P/V = 36/12 = 3 A $Q = It = 3 \times 7200 s = 21600$ C or coulombs		1 1 1	4.1.1 4.2.5 AO2
2(a)	$I = \Delta Q / \Delta t$ $\Delta t = \Delta Q / I = 15 \text{ C} / 30 000 \text{ A} = 5 \times 10^{-4} \text{ s}$		1	4.1.1 AO1
(b)	number of electrons = ΔQ /charge on 1 electron Number of electrons = 15 C / 1.6 × 10 ⁻¹⁹ C = 9.4 × 10 ¹⁹		1 1	4.1.1 AO2
(c)	$W = VQ = 40 \times 10^6 \times 15 \text{ C} = 6 \times 10^8 \text{ J}$		1	4.2.2 AO2
(d)	Use of $E = mc\Delta\theta$ or $E = mL$ $E = (0.58 \times 830 \times 1800) + (0.58 \times 156000) = 9.6 \times 10^5 \text{ J}$ Yes $6 \times 10^8 \text{ J} >> 9.6 \times 10^5 \text{ J}$		1 1 1	5.1.3 AO3
3(a)	$e \ C = A \ s \ or \ n \ m^{-3}$ I = nAve $= m^{-3} \ m^2 \ m \ s^{-1} \ C$ $= s^{-1} \ A \ s = A$	mark for either correct units for n or use of $Q = It$ Must see cancelling	1	2.1.2 AO2
(b)	As area increases the mean drift velocity decreases		1	4.1.2 AO2

Question	Answers	Extra information	Mark	AO Spec reference
	I = nAve Since the wires are made of the same material and connected in series <i>I</i> , <i>n</i>	Must have the statement about I , n and e are constant for subsequent	M1	
	and e are constant (wtte) $v \propto 1/A$	mark A1	A1	
(c)	$n = I/Ave A = \pi r^2 = \pi (0.11 \times 10^{-3})^2$		1	4.1.2
	$n = 3/\pi (0.11 \times 10^{-3})^2 \times 1.6 \times 10^{-19} \times 4.9 \times 10^{-3}$ n = 1×10 ²⁹		1	AO2
(d)	The resistance increases		1	4.2.4
	 Max two from the following positive ions in the lattice vibrate with greater amplitudes free electrons have more collisions with positive ions more energy is transferred to the lattice 		Max 2	AO1
4(a)	$I = nAve \text{ and } A = 4 \times 10^{-6} \text{ m}^2$		1	4.1.2
	$v = 1/nAe = 1/1.4 \times 10^{25} \times 4 \times 10^{-6} \times 1.6 \times 10^{-19}$ $v = 2.2 \times 10^{-4} \text{ m s}^{-1}$		1	AO1
(b)	$R = \rho l/A$ and ρ stays the same		1	4.2.4 AO2
	$R \propto I$ $R \propto 1/A$ so resistance stays the same		1	NOL
(c)	Student either calculates or appreciates that	Allow e.c.f. from $4.2 - if$ they think resistance has changed will be using a new current to determine the v	1	4.1.2
	<i>I</i> same, <i>n</i> same and <i>e</i> same $v \propto 1/A$ so if <i>A</i> doubled $v = 1.1 \times 10^{-4}$ m s ⁻¹		1	AO3
(d)	I = $nAve$ and I , A and e constant		1	4.1.2
	$v \propto 1/n$ so v smaller in the connecting wires (vice versa)		1	AO3

Question	Answers	Extra information	Mark	AO Spec reference
5(a)	$Q = It = 2 \times 4 \times 60 = 480 \text{ C}$		1	4.1.1 AO1
(b)	$e = 1.6 \times 10^{-19} \text{ C}$ $n \text{ of ions} = 480/1.6 \times 10^{-19} = 3 \times 10^{21}$		1 1	4.1.1 AO2
(c)	$m/=3 \times 10^{21} \times 1.79 \times 10^{-25} \text{ kg} = 5.37 \times 10^{-4} \text{ kg}.$		1	4.1.1 AO2
(d)	$\rho = m/V$ $V = m/\rho V = dA$	use of $\rho = m/V$ or conversion of area to m^2	1	3.2.4 AO2
	$d = m/A\rho = 5.37 \times 10^{-4} \text{ kg}/(35 \times 10^{-4} \times 1.05 \times 10^{4})$ depth = $1.5 \times 10^{-5} \text{ m}$		1 1	
6(a)	A semiconductor is a material where the number of charge carrier/resistivity/n/free electrons per unit volume/number density changes depending on the conditions.	names condition e.g. change temperature/light intensity /energy increase NOT half way between conductor and insulator	1	4.2.4 AO1
(b)	use of $R = \rho l/A$ or $A = \pi r^2 = \pi \ 0.038^2$ $R = 3000 \times 375 \times 10^{-6} \text{ m}/\pi 0.038^2 = 248 \ \Omega$		1 1	4.2.4 AO2
(c)	V = IR $I = V/R = 0.4/248 = 1.6 \times 10^{-3} \text{ A}$	e.c.f	1	4.2.3 AO1
(d)	I = nAve $v = I/nAe = 1.6 \times 10^{-3} / 8.7 \times 10^{15} \times \pi \ 0.038^2 \times 1.6 \times 10^{-19}$ $v = 260 \ (255) \ m \ s^{-1}$		1 1	4.1.2 AO2
(e)	<i>n</i> would increase <i>v</i> would decrease		1 1	4.1.2 AO2

Question	Answers	Extra information	Mark	AO Spec reference
7(a)	Current flowing into a junction/component is equal to the current flowing out.		1	4.1.1 AO1
	Law of conservation of charge		1	
(b)	Either <i>I</i> = 0.4 + 0.3 = 0.7 A or <i>t</i> = 10 × 60 = 600 s		1	4.1.1
	$Q = It = 600 \times 0.7 = 420 \text{ C}$		1	AO2
(c)	0.6 A		1	4.1.1
	Current flowing out of X is 0.7 A therefore current flowing into Y must also be 0.7 A $(0.6 + 0.1) = 0.7$		1	AO2
(d)	0.3 A		1	4.1.1
	downwards/from top branch to bottom		1	AO2
8(a)	KE = $\frac{1}{2} mv^2$ 20 keV = 20 000 × 1.6×10 ⁻¹⁹ C = 3.2×10 ⁻¹⁵ J	either statement for this mark	1	4.2.2 AO2
	$\frac{1}{2} mv^2 = 3.2 \times 10^{-15}$		1	
	$v^2 = 2 \times 3.2 \times 10^{-15} / 9.11 \times 10^{-31}$			
	$v = 8.4 \times 10^7 \text{ m s}^{-1}$			
(b)	$v = d/t$ and $d = 4.22 \times 10^8/t$	e.c.f	1	3.1.1
	$t = 4.22 \times 10^8 / 8.4 \times 10^7 = 5.0 \text{ s}$			AO2
(c)	Q = It		1	4.1.1
	$ne = 3 \times 10^6 \text{ A} \times 1$			AO2
	$n = 3 \times 10^{6} / 1.6 \times 10^{-19}$		4	
	$n = 1.9 \times 10^{25}$		1	
(d)	From Jupiter to Io		1	4.1.1
				AO1