A Level OCR Physics

Chapter 10 Charge and current

Question	Answers	Extra information	Mark	AO Spec reference
1(a)(i)	ions		1	$\begin{aligned} & 4.1 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(ii)	electrons		1	$\begin{aligned} & 4.1 .1 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$\begin{aligned} & P=E / t \quad E=P t \text { or time }=2 \times 60 \times 60=7200 \mathrm{~s} \\ & E=36 \times 7200=2.6 \times 10^{4} \mathrm{~J} \end{aligned}$	any for first mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.3.3 } \\ & \text { AO1 } \end{aligned}$
(c)	$\begin{aligned} & Q=I t \quad P=V I \quad I=P / V=36 / 12=3 \mathrm{~A} \\ & Q=I t=3 \times 7200 \mathrm{~s}=21600 \end{aligned}$ C or coulombs		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .1 \\ & 4.2 .5 \\ & \mathrm{AO} 2 \end{aligned}$
2(a)	$\begin{aligned} & I=\Delta Q / \Delta t \\ & \Delta t=\Delta Q / I=15 \mathrm{C} / 30000 \mathrm{~A}=5 \times 10^{-4} \mathrm{~s} \end{aligned}$		1	$\begin{aligned} & \text { 4.1.1 } \\ & \text { AO1 } \end{aligned}$
(b)	$\begin{aligned} & \text { number of electrons }=\Delta Q / \text { charge on } 1 \text { electron } \\ & \text { Number of electrons }=15 \mathrm{C} / 1.6 \times 10^{-19} \mathrm{C}=9.4 \times 10^{19} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$W=V Q=40 \times 10^{6} \times 15 \mathrm{C}=6 \times 10^{8} \mathrm{~J}$		1	$\begin{aligned} & 4.2 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	Use of $E=m c \Delta \theta$ or $E=m L$ $E=(0.58 \times 830 \times 1800)+(0.58 \times 156000)=9.6 \times 10^{5} \mathrm{~J}$ Yes $6 \times 10^{8} \mathrm{~J} \gg 9.6 \times 10^{5} \mathrm{~J}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 5.1.3 } \\ & \text { AO3 } \end{aligned}$
3(a)	$\begin{aligned} & e C=\mathrm{As} \text { or } \mathrm{n}^{-3} \\ & I=\text { nAve } \\ & =\mathrm{m}^{-3} \mathrm{~m}^{2} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{C} \\ & =\mathrm{s}^{-1} \mathrm{~A} \mathrm{~s}=\mathrm{A} \end{aligned}$	mark for either correct units for n or use of $Q=I t$ Must see cancelling	1 1	$\begin{aligned} & 2.1 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(b)	As area increases the mean drift velocity decreases		1	$\begin{aligned} & 4.1 .2 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 10 Charge and current

Question	Answers	Extra information	Mark	AO Spec reference
	$I=n A v e$ Since the wires are made of the same material and connected in series I, n and e are constant (wtte) $v \propto 1 / A$	Must have the statement about I, n and e are constant for subsequent mark A1	M1 A1	
(c)	$\begin{aligned} & n=I / \text { Ave } A=\pi r^{2}=\pi\left(0.11 \times 10^{-3}\right)^{2} \\ & n=3 / \pi\left(0.11 \times 10^{-3}\right)^{2} \times 1.6 \times 10^{-19} \times 4.9 \times 10^{-3} \\ & n=1 \times 10^{29} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	The resistance increases Max two from the following - positive ions in the lattice vibrate with greater amplitudes - free electrons have more collisions with positive ions - more energy is transferred to the lattice		$\begin{gathered} 1 \\ \operatorname{Max} 2 \end{gathered}$	$\begin{aligned} & 4.2 .4 \\ & \mathrm{AO} 1 \end{aligned}$
4(a)	$\begin{aligned} & I=n A v e \text { and } A=4 \times 10^{-6} \mathrm{~m}^{2} \\ & v=1 / n A e=1 / 1.4 \times 10^{25} \times 4 \times 10^{-6} \times 1.6 \times 10^{-19} \\ & v=2.2 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		1 1	4.1.2 A01
(b)	$R=\rho l / A$ and ρ stays the same $R \propto \mathrm{I} \quad R \propto 1 / A$ so resistance stays the same		1 1	$\begin{aligned} & 4.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	Student either calculates or appreciates that I same, n same and e same $v \propto 1 / A$ so if A doubled $v=1.1 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$	Allow e.c.f. from 4.2 - if they think resistance has changed will be using a new current to determine the v	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .2 \\ & \text { AO3 } \end{aligned}$
(d)	$I /=n A v e$ and I, A and e constant $v \propto 1 / n$ so v smaller in the connecting wires (vice versa)		1 1	$\begin{aligned} & 4.1 .2 \\ & \text { AO3 } \end{aligned}$

A Level OCR Physics

Chapter 10 Charge and current

Question	Answers	Extra information	Mark	AO Spec reference
5(a)	$Q=I t=2 \times 4 \times 60=480 \mathrm{C}$		1	$\begin{aligned} & 4.1 .1 \\ & \text { AO1 } \end{aligned}$
(b)	$\begin{aligned} & e=1.6 \times 10^{-19} \mathrm{C} \\ & n \text { of ions }=480 / 1.6 \times 10^{-19}=3 \times 10^{21} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .1 \\ & \text { AO2 } \end{aligned}$
(c)	$m /=3 \times 10^{21} \times 1.79 \times 10^{-25} \mathrm{~kg}=5.37 \times 10^{-4} \mathrm{~kg}$.		1	$\begin{aligned} & 4.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	$\begin{aligned} & \rho=m / V \\ & V=m / \rho \quad V=d A \\ & d=m / A \rho=5.37 \times 10^{-4} \mathrm{~kg} /\left(35 \times 10^{-4} \times 1.05 \times 10^{4}\right) \\ & \text { depth }=1.5 \times 10^{-5} \mathrm{~m} \end{aligned}$	use of $\rho=m / V$ or conversion of area to m^{2}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO2 } \end{aligned}$
6(a)	A semiconductor is a material where the number of charge carrier/resistivity/n/free electrons per unit volume/number density changes depending on the conditions.	names condition e.g. change temperature/light intensity /energy increase NOT half way between conductor and insulator	1	$\begin{aligned} & 4.2 .4 \\ & \mathrm{AO} 1 \end{aligned}$
(b)	$\begin{aligned} & \text { use of } R=\rho l / A \text { or } A=\pi r^{2}=\pi 0.038^{2} \\ & R=3000 \times 375 \times 10^{-6} \mathrm{~m} / \pi 0.038^{2}=248 \Omega \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.2 .4 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} & V=I R \\ & I=V / R=0.4 / 248=1.6 \times 10^{-3} \mathrm{~A} \end{aligned}$	e.c.f	1	$\begin{aligned} & 4.2 .3 \\ & \text { AO1 } \end{aligned}$
(d)	$\begin{aligned} & I=n A v e \\ & v=I / n A e=1.6 \times 10^{-3} / 8.7 \times 10^{15} \times \pi 0.038^{2} \times 1.6 \times 10^{-19} \\ & v=260(255) \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 4.1.2 } \\ & \text { AO2 } \end{aligned}$
(e)	n would increase v would decrease		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .2 \\ & \mathrm{AO} 2 \end{aligned}$

A Level OCR Physics

Chapter 10 Charge and current

Question	Answers	Extra information	Mark	AO Spec reference
7(a)	Current flowing into a junction/component is equal to the current flowing out. Law of conservation of charge		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 4.1.1 } \\ & \text { AO1 } \end{aligned}$
(b)	Either $I=0.4+0.3=0.7 \mathrm{~A}$ or $t=10 \times 60=600 \mathrm{~s}$ $Q=I t=600 \times 0.7=420 \mathrm{C}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.1 .1 \\ & \text { AO2 } \end{aligned}$
(c)	$0.6 \mathrm{~A}$ Current flowing out of X is 0.7 A therefore current flowing into Y must also be 0.7 A $(0.6+0.1)=0.7$		1 1	$\begin{aligned} & 4.1 .1 \\ & \text { AO2 } \end{aligned}$
(d)	$0.3 \mathrm{~A}$ downwards/from top branch to bottom		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 4.1.1 } \\ & \text { AO2 } \end{aligned}$
8(a)	$\begin{aligned} & \mathrm{KE}=1 / 2 m v^{2} \quad 20 \mathrm{keV}=20000 \times 1.6 \times 10^{-19} \mathrm{C}=3.2 \times 10^{-15} \mathrm{~J} \\ & 1 / 2 m v^{2}=3.2 \times 10^{-15} \\ & v^{2}=2 \times 3.2 \times 10^{-15} / 9.11 \times 10^{-31} \\ & v=8.4 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	either statement for this mark	1 1	$\begin{aligned} & 4.2 .2 \\ & \mathrm{AO} 2 \end{aligned}$
(b)	$\begin{aligned} & v=d / t \text { and } d=4.22 \times 10^{8} / t \\ & t=4.22 \times 10^{8} / 8.4 \times 10^{7}=5.0 \mathrm{~s} \end{aligned}$	e.c.f	1	$\begin{aligned} & 3.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(c)	$\begin{aligned} & Q=I t \\ & n e=3 \times 10^{6} \mathrm{~A} \times 1 \\ & n=3 \times 10^{6} / 1.6 \times 10^{-19} \\ & n=1.9 \times 10^{25} \end{aligned}$		1 1	$\begin{aligned} & 4.1 .1 \\ & \mathrm{AO} 2 \end{aligned}$
(d)	From Jupiter to lo		1	$\begin{aligned} & \text { 4.1.1 } \\ & \text { AO1 } \end{aligned}$

