A Level OCR Chemistry

Chapter 9 -answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	Appropriate scale All points plotted correctly Smooth curve of best fit	Take care to check values on Y axis as standard form	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .2 \\ \text { AO3 } \end{gathered}$
1(b)	Increasing concentration increases the number of particles in a given volume Which increases the frequency/chance of a collision Curve occurs due to heating from exothermic reaction.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .2 \\ & \text { AO1 } \end{aligned}$
1(c)	Remove oxide layer Oxide will react differently/prevent reaction with HCl		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .2 \\ \text { AO3 } \end{gathered}$
2(a)	The concentration of the product will increase / the system will shift to reduce that change		1	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$
2(b)	A substance which lowers the activation energy By providing an alternative route/pathway		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .2 \\ \text { AO1 } \end{gathered}$
2(c)	Reduces the time (taken to reach equilibrium)	Must be quantified in terms of time	1	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$
2(d)	No effect		1	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$
2(e)	High pressure Low temperaturs		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$
3(a)(i)	```x axis = energy y axis = No of particles/ proportion of particles/mole fraction```		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .2 \\ \text { AO1 } \end{gathered}$
3(a)(ii)	Vertical line from x axis to peak		1	$\begin{gathered} 3.2 .2 \\ \text { AO1 } \end{gathered}$
3(a)(iii)	The new peak should be to the left of the original and be higher than the original.		1	$\begin{gathered} 3.2 .2 \\ \text { AO1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 9 -answers

Question	Answers	Extra information	Mark	AO Spec reference
3(b)	A decrease in the number / proportion of molecules with $E \geq E a$ Fewer effective / productive / successful collisions in a given time / given period		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .2 \\ & \text { AO3 } \end{aligned}$
3(c)	No effect Shape of graph is the same no matter pressure if temperature is the same	OR only temperature changes the shape	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .2 \\ \text { AO1 } \end{gathered}$
4(a)(i)	Methanoic acid		1	$\begin{aligned} & 6.1 .3 \\ & \text { AO1 } \end{aligned}$
4(a)(ii)	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{HCOOH} \rightleftharpoons \mathrm{HCOOC}_{3} \mathrm{H}_{7}$	Allow any correct formula Must have reversible arrow	1	$\begin{aligned} & 3.2 .3 \\ & \text { AO1 } \end{aligned}$
4(a)(iii)	Reflux To prevent reactants or products evaporating		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.1 .3 \\ & \text { AO1 } \end{aligned}$
4(b)	Moles of propanoic acid at equilibrium $=0.95$ Moles of methanoic acid at equilibrium $=0.45$ $K_{\mathrm{c}}=\frac{\left[\mathrm{HCOOC}_{3} \mathrm{H}_{7}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{HCOOH}]\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right]}$ or workings $K_{c}=(1.05 / 2)^{2} /(0.95 / 2 \times 0.45 / 2)=2.58$ No units	Allow completed table or can be found in K_{c} equation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5.1 .2 \\ & \text { AO2 } \end{aligned}$
5(a)	No effect		1	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$

A Level OCR Chemistry

Chapter 9 -answers

Question	Answers	Extra information	Mark	AO Spec reference
5(b)	Concentration of B would increase (Forward reaction is endothermic) equilibrium would shift to the left/ exothermic To oppose the change/to heat the solution		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$
5(c)(i)	Moles of B start $=0.66 \times 0.1=0.066$ Change in B moles $=0.066-0.048=0.018$ Moles of $A=1.8 \times 10^{2}-(0.018 / 2)=9 \times 10^{-3}(\mathrm{~mol})$ Moles $\mathrm{C}=9 \times 10^{-3}(\mathrm{~mol})$ Moles $\mathrm{D}=\left(9 \times 10^{-3}\right) \times 3=0.027(\mathrm{~mol})$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .3 \\ & \mathrm{AO} 2 \end{aligned}$
5(c)(ii)	$\begin{aligned} & K_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]^{3}}{[\mathrm{~A}][\mathrm{B}]^{2}} \\ & =\frac{(0.009 / 0.1) \times(0.027 / 0.1)^{3}}{(0.009 / 0.1) \times(0.048 / 0.1)^{2}} \\ & =0.0856 \\ & \mathrm{moldm}^{-3} \end{aligned}$	Allow e.c.f. from 07.3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	5.1.2
6(a)	Increase the rate of reaction Higher proportion of reactants above the activation energy so a greater proportion of collisions are successful More frequent collisions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .3 \\ \text { AO1 } \end{gathered}$

A Level OCR Chemistry

Chapter 9 -answers

Question	Answers	Extra information	Mark	AO Spec reference
6(b)	$K_{\mathrm{c}}=\frac{[\mathrm{D}][\mathrm{E}]}{[\mathrm{X}][\mathrm{Y}]^{2}[\mathrm{X}]}$ Moles at equilibrium: $\begin{aligned} & \mathrm{X}=0.90 \\ & \mathrm{Y}=0.80 \\ & \mathrm{Z}=0.20 \\ & \mathrm{D}=0.60 \\ & \mathrm{E}=0.6 \\ & K_{\mathrm{c}}=\frac{\frac{0.60}{0.5} \times \frac{0.60}{0.5}}{\frac{0.90}{0.5} \times\left(\frac{0.80}{0.5}\right)^{2} \times \frac{0.20}{0.5}} \\ & =0.781 \\ & \mathrm{~mol}^{-2} \mathrm{dm}^{6} \end{aligned}$		1 1 1 1	$\begin{aligned} & \text { 5.1.2 } \\ & \text { AO2 } \end{aligned}$
6(c)	K_{c} will be smaller Equilibrium will shift left /towards endothermic So denominator will be larger		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .3 \\ & \mathrm{AOP} \end{aligned}$
7(a)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$		1	$\begin{aligned} & 2.2 .1 \\ & \mathrm{AOO} \end{aligned}$
7(b)	Both are molecular covalent van der Waals are the intermolecular force Sulfur molecules have more electrons so stronger van der Waals More energy needed to break forces resulting in higher melting and boiling points		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 2.2.2 } \\ & \mathrm{AOS} \end{aligned}$
7(c)	Reversible reaction where the forwards and backwards rates are equal. So the concentrations of reactant remain constant		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.2.3 } \\ \text { AO1 } \end{gathered}$

A Level OCR Chemistry

Chapter 9 -answers

Question	Answers	Extra information	Mark	AO Spec reference
7(d)	No effect		1	$\begin{aligned} & 3.2 .3 \\ & \text { AO1 } \end{aligned}$
7(e)	12 kPa Mole fraction $=$ partial pressure \div total pressure $=12 / 104=0.115$	Ignore units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 5.1.2 } \\ & \text { AO2 } \end{aligned}$
7(f)	68 kPa	Allow e.c.f. from 08.5	1	$\begin{aligned} & \text { 5.1.2 } \\ & \text { AO2 } \end{aligned}$
7(g)	$\begin{aligned} & K_{\mathrm{P}}=\frac{\left(\mathrm{pSO}_{3}\right)^{2}}{\left(p \mathrm{SO}_{2}\right)^{2} \times\left(p \mathrm{O}_{2}\right)} \\ & K_{\mathrm{P}}=\frac{68^{2}}{24^{2} \times 12}=0.669 \end{aligned}$ kPa	Allow e.c.f. from $08.5+08.6$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 5.1.2 } \\ & \text { AO2 } \end{aligned}$
7(h)	Shift to the right/ forwards/products/ SO_{3} Increasing pressure favours side with fewest moles		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .3 \\ & \text { AO1 } \end{aligned}$
8(a)	Vertical line to the left of $E_{\text {grt }}$ line labelled correctly		1	$\begin{aligned} & \hline \text { 3.2.2 } \\ & \text { AO1 } \end{aligned}$
8(b)	Line: Overall general shape is the same but peak is lower and to the right. Line stays above original and follows the same shape. More frequent collisions Higher proportion of collisions are successful As more collisions have an energy above the activation energy		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { 3.2.2 } \\ & \text { AO3 } \end{aligned}$
8(c)	Compromise as low temperature favours products Too low a temperature would make the reaction too slow		1	$\begin{aligned} & \text { 3.2.3 } \\ & \text { AO3 } \end{aligned}$

A Level OCR Chemistry

Chapter 9 -answers

Skills box answers:

a) To reduce mass lost due to spitting. It is fit loosely so that CO_{2} can still escape.
(i) $2 \mathrm{HCl}+\mathrm{CaCO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{CaCl}_{2}$

At max mass, $[\mathrm{HCl}]=2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ (this is the initial amount)
Change in mass (Δ mass) $=$ loss of CO_{2}

$$
\begin{aligned}
& \operatorname{mol}\left(\mathrm{CO}_{2}\right)=\frac{\Delta(\mathrm{mass})}{44} \\
& 2 \times \mathrm{mol}\left(\mathrm{CO}_{2}\right)=\operatorname{mol}(\mathrm{HCl})=2 \times \frac{\Delta(\mathrm{mass})}{44} \\
& \therefore[\mathrm{HCl}]=\frac{\mathrm{mol}(\mathrm{HCl})}{\text { volume }}=\frac{2 \times \Delta \text { mass }}{44 \times 16 \times 10^{-3}}(=2.84 \times \Delta(\text { mass }))
\end{aligned}
$$

(ii) Measure the half-life of the reaction. If it is constant, then it is first order wrt HCl
(iii) Measure the average half-life and then use $k=\frac{\ln (2)}{t_{1 / 2}}$

