

Chapter 8 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	16 <u>.0</u> (only)		1	3.2.1 AO1 MS1.1
1(b)	Enthalpy change when <u>1 mole</u> of substance Is <u>completely</u> burnt in oxygen Products and reactants in <u>standard states under standard conditions</u>		1 1 1	AO1 3.2.1
1(c)	$C_3H_8O(l) + 4\frac{1}{2}O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$	Allow any accurate structure of propan-1-ol State symbols required	1	2.1.3 AO1
1(d)	$Q = mc\Delta T$ $Q = 200 \times 4.18 \times 16 = 13376 \text{ J}$ $\text{Moles} = \text{mass}/M_{\text{r}} = 1.17/60 = 0.0195$ $\Delta_{\text{c}}H = -13376/0.0195 = -685\ 949\ \text{J}\ \text{mol}^{-1}$ $-686\ \text{kJ}\ \text{mol}^{-1}$	Or equivalent Must be 3 s.f. must have minus sign	1 1 1 1	3.2.1 MS0.0,1.1 AO2
1(e)	Heat lost to surroundings Incomplete combustion of fuel Some fuel evaporates between end of experiment and measurement of mass	Allow not enough oxygen	1 1 1	3.2.1 AO3
2(a)	Suitable scale Labels on both axis Correct labels All points plotted accurately Both lines extrapolated to 5 th minute Instantaneous temperature calculated (expected to be 13.6 °C)	Allow splitting of y axis Points must cover over half the page (if scale can be sensibly doubled lose mark 2 Allow two errors ±1mm	1 1 1 1 1	3.2.1 AO3

© Oxford University Press www.oxfordsecondary.com

Chapter 8 - answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)	With $T = 13.6$ $Q = mc\Delta T$ $Q = 50 \times 4.18 \times 13.6 = 2842(.4)$ Moles = $\frac{C \times V}{1000} = \frac{2 \times 25}{1000} = 0.05$ $\Delta_c H = -2842/0.05 = -56840 \text{ J mol}^{-1}$ $-56.8 \text{ kJ mol}^{-1} \text{ MUST have minus}$		1 1 1 1	3.2.1 MS0.0,1.1 AO2
2(c)	Same value as 02.2 Still producing water so enthalpy per mole should be the same		1 1	3.2.1 AO3
3(a)	H H-C-H H H H-C-C-C-C-H is H H H H	Only accept RHS as answer	1	4.1.1 AO1
3(b)	Chain		1	4.1.1 AO1
3(c)	$C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$		1	4.1.2 AO3
3(d)	The enthalpy change is independent of the route taken		1	3.2.1 AO1
3(e)	$\Delta_{\rm r}H$ = -2878 + 2869 = -9 kJ mol ⁻¹	Allow correct cycle 1 mark for recall of products- reactants or cycle	1 1	3.2.1 AO2
3(f)	+9 kJ mol ⁻¹	Allow their answer for 3.5 with opposite sign	1	3.2.1 AO3

[©] Oxford University Press www.oxfordsecondary.com

Chapter 8 - answers

Question	Answers	Extra information	Mark	AO Spec reference
3(g)	High activation energy		1	3.2.1 AO3
4(a)	$\Delta_{\rm r}H$ = Σ reactants – Σ products = -1072 + - (2 × 432) + (3 × 413) + 358 + 467 = + 128 kJ mol ⁻¹		1 1	3.2.1 MS1.2 AO2
4(b)	Bond enthalpies are an approximate/average Over a range of compounds		1 1	3.2.1 MS1.2 AO3
4(c)	$(\Delta H = \Sigma \text{reactants} - \Sigma \text{products})$ $\Sigma \text{ reactants} = (6 \times 413) + (2 \times 358) + (2 \times 467) + 3X (= 3X + 4128)$ $\Sigma \text{ products} = (4 \times 799) + (8 \times 467) = 6932$ $(2 \times -715 = 3X + 4128 - 6932)$ $X = 458 \text{ kJ mol}^{-1}$	Allow correct cycle Sum of reactants and products Any valid simplification to find X	1 1 1	3.2.1 3.2.1 MS1.2 AO2
4(d)	$(\Delta H = \Sigma \Delta_f H(\text{prod.}) - \Sigma \Delta_f H(\text{react.}))$ $-19 = 3X - (-822) - (3 \times -111)$ $-1174/3 = X = -391 \text{ kJ mol}^{-1}$	Allow correct cycle 1 mark for recall of products- reactants or cycle	1 1 1	3.2.1 3.2.1 AO2 MS1.1
5(a)	$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$		1	3.2.1 AO1
5(b)	1, 2-difluoroethane		1	4.1.1 AO1
5(c)	It's an element		1	3.2.1 AO1

 $[\]hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 8 - answers

Question	Answers	Extra information	Mark	AO Spec reference
5(d)	$\Delta_{\rm r}H = \Sigma {\rm products} - \Sigma {\rm reactants}$ $-1134 = X + (2 \times -273) - (-84)$ $-1134 = X -462$ $X = -672 {\rm kJ mol^{-1}}$	Allow correct cycle	1 1 1	3.2.1 3.2.1 AO2 MS1.1
6(a)	$-136 = (612 + 436 + 4X) - (6X + 348)$ $-136 = (612 + 436) - 2X - 348$ $-136 = 700 - 2X$ $-836 = -2X$ $-836/-2 = X = 418 \text{ kJ mol}^{-1}$	Allow correct cycle	1 1 1	3.2.1 3.2.1 MS1.2 AO2
6(b)	It is an element		1	3.2.1 AO1
6(c)	Giant covalent (macromolecule) Strong covalent bonds Lots of energy needed to break the bonds		1 1 1	2.2.2 AO1
6(d)	Ethane More moles of water can be formed	Allow references to forms more bonds Ignores breaks more bonds	1	3.2.1 AO3
7(a)	$3N_2H_4 \rightarrow N_2 + 4NH_3$		1	2.1.3 AO1
7(b)	ΔH = (12 × 388) + (3 × 163) – (12 × 388) – (944) = -455 kJ for 3 moles hydrazine -455/3 = -151.67	Allow e.c.f. from 08.1 Allow correct cycle	1 1 1	3.2.1 MS1.2 AO2
	−152 kJ mol ⁻¹		1	

© Oxford University Press www.oxfordsecondary.com

Chapter 8 - answers

Question	Answers	Extra information	Mark	AO Spec reference
7(c)	ΔH = Σproducts – Σreactants = $(4 \times -286) - 96 - (2 \times -187)$ = -866 kJ mol ⁻¹	Allow e.c.f. from 08.1 Allow correct cycle	1	3.2.1 3.2.1 MS1.2 AO2
			1	
7(d)	Moles = $1.45/32 = 0.0453$ $q = 866 \times 0.0453 = 39.24 \text{ kJ} = 39240 \text{ J}$ $q = mc\Delta T$		1 1	3.2.1 MS 0.0 1.1 AO2
	$\Delta T = q/mc = 39240/(500 \times 4.18) = 18.8$ 298 + 18.8 = 316.8 = 317 K	Answer must be 3 s.f. Allow 43.8 °C	1 1	
7(e)	PV = nRT $n = \frac{PV}{RT} = \frac{100000 \times 4.6}{8.31 \times 298} = 185.755 \text{ moles}$ Mass = 32 × 185.755 = 5944 g = 5.9 kg	Must be 2 s.f.	1 1 1 1	2.1.3 MS0.0,2.2,2.3,2.4 AO2
8(a)	(Enthalpy change) when 1 mol of a compound is formed from its constituent elements in their standard states		1 1 1	3.2.1 AO1
8(b)	The enthalpy change for a reaction is independent of the route		1	3.2.1 AO1
8(c)	$\begin{split} &\Delta_{\mathrm{R}}H = \Sigma \Delta_{\mathrm{f}}H \text{ products} - \Sigma \Delta_{\mathrm{f}}H \text{ reactants} \\ &= \left[(3 \times -286) + (3 \times -394) \right] - (-248) \\ &= -1792 (\text{kJ mol}^{-1}) \end{split}$	Allow correct cycle	1 1 1	3.2.1 AO2 MS0.0,1.1

© Oxford University Press www.oxfordsecondary.com

Chapter 8 - answers

Skills box answers:

(i)
$$\Delta T = 69.5 - 20.5 = 49.0 \,^{\circ}\text{C}$$

% $error = \frac{2 \times 0.5}{49.0} \times 100 = 2\%$

(ii) With 150 cm³ cylinder: $\% error = \frac{1}{150} \times 100 = 0.67\%$ With 25 cm³ cylinder 6 times: $\% error 6 \times \frac{0.2}{25} \times 100 = 4.8\%$

Therefore, using the 150 cm³ cylinder once is better than using the 25 cm³ six times.

- (iii) The measured temperature change would be higher as less heat/energy would be lost to the surroundings Therefore, the calculated value for $\Delta_c H$ would be more exothermic
- (iv) The temperature change would reach 100 °C and not get any higher as the water would be boiling/evaporating/changing state. So, the measured value of ΔT would be lower. Therefore, the measured value of $\Delta_c H$ would be less exothermic.

 $\hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$