A Level OCR Chemistry

Chapter 5 -answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	The energy required to remove 1 mole of electrons from one mole of gaseous atoms		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO1 } \end{aligned}$
1(b)	Aluminium / Al lots of energy needed to remove $4^{\text {th }}$ electron therefore new shell owtte		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO2 } \end{aligned}$
1(c)	They are both to the same number of significant figures		1	$\begin{gathered} \text { 3.1.1 } \\ \text { MS1.1 } \\ \text { AO3 } \end{gathered}$
2(a)	$\begin{aligned} & \left(4 \times 1.660540 \times 10^{-27}\right)+\left(5 \times 1.674929 \times 10^{-27}\right)+\left(4 \times 9.109390 \times 10^{-31}\right) \\ & =1.502045 \times 10^{-26}(\mathrm{~kg}) \end{aligned}$	1 mark for answer 1 mark for 7 s.f.	2	$\begin{gathered} \text { 2.1.1 } \\ \text { MS1.1 } \\ \text { AO2 } \end{gathered}$
2(b)	$\mathrm{Be}^{+}(\mathrm{g}) \rightarrow \mathrm{Be}^{2+}(\mathrm{g})+\mathrm{e}^{-}$	1 mark for equation 1 mark for state symbols Lose state symbol mark if (g) on electron	2	$\begin{gathered} 3.1 .1 \\ \text { AO1 } \end{gathered}$
2(c)	Third electron is being removed from inner shell/ $1^{\text {st }}$ shell/ 1 s Nearer to nucleus/less shielding More energy required to remove electron	If no other marks allow 'being removed from a positive ion' without clarification for $\mathbf{1}$ mark	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO2 } \end{aligned}$
2(d)	Beryllium has a higher nuclear charge than lithium Same shielding Electron are pulled closer/ more strongly	Allow 'more protons' and converse	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.1.1 } \\ & \text { AO3 } \end{aligned}$
3(a)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$	4 s and 3d in either order	1	$\begin{aligned} & \text { 3.1.1 } \\ & \text { AO1 } \end{aligned}$
3(b)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$		1	$\begin{aligned} & \text { 3.1.1 } \\ & \text { AO2 } \end{aligned}$
3(c)	An element that forms a stable ion with a partially filled d orbital		2	$\begin{gathered} 5.3 .1 \\ \text { AO1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 5 -answers

Question	Answers	Extra information	Mark	AO Spec reference
3(d)	Same number of protons Different number of neutrons	Allow same atomic number	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 2.1 .1 \\ \text { AO1 } \end{gathered}$
3(e)	$\begin{aligned} & 100-71.23=28.77 \\ & \frac{(63 \times 71.23)+(65 \times 28.77)}{100}=63.58 \end{aligned}$	63.575... scores $\mathbf{2}$ marks 63.57 scores 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 2.1.1 } \\ \text { AO2 } \\ \text { MS1.1,1.2,3.2 } \end{gathered}$
3(f)(i)	Hexaaquacopper(II) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	Allow numerical 2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.3 .1 \\ \text { AO1 } \end{gathered}$
3(f)(ii)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$ Blue precipitate		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 5.3.1 } \\ \text { AO1 } \end{gathered}$
4(a)	It has an electron in a $2 p$ orbital/subshell	Answer must reference electron shells. Reject 'it is in the p block' or similar	1	$\begin{aligned} & 3.1 .1 \\ & \text { AO1 } \end{aligned}$
4(b)	$1 s^{2} 2 s^{2} 3 p^{1}$		1	$\begin{gathered} \text { 3.1.1. } \\ \text { AO1 } \end{gathered}$
4(c)	$2 s$ orbital is closer to nucleus than $2 p$ Stronger attraction/harder to remove		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO3 } \end{aligned}$
4(d)	$\mathrm{BeCl}_{2} 2$ bonding pairs 0 lone pairs Linear 180° $\mathrm{BCl}_{3} 3$ bonding pairs 0 lone pairs Trigonal planar 120°	ignore diagrams	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 2.2 .2 \\ \text { AO3 } \end{gathered}$
5(a)(i)	The bonding between positive metals ions ('sea’ of) delocalised electrons		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO1 } \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 5 -answers

Question	Answers	Extra information	Mark	AO Spec reference
5(a)(ii)	Rows of ions can slide over each other		1	3.1 .1
(b)	$\mathrm{Fe}_{2} \mathrm{O}_{3}$		1	2.1 .1
AO1				

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 5 -answers

Question	Answers	Extra information	Mark	AO Spec reference
7(c)	Sulfur is rings/molecules of S_{8} Phosphorus is P_{4} (tetrahedral) More electrons result in stronger van der Waals forces	Accept VdW/ intermolecular forces	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO1 } \end{aligned}$
8(a)	Both are giant covalent/macromolecular Diamond: Each C atom bonded to 4 others. Hard due to 3D structure Strong covalent bonds Graphite: Each C atom bonded to 3 others Layers have weak forces/Van der waals So slide past each other Both have high melting points as strong covalent bonds need to be broken	Allow diagram (min 5 C atoms) Allow diagram (min 5 C atoms)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO1 } \end{aligned}$
8(b)(i)	Free/delocalised electrons Which can flow between layers		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO3 } \end{aligned}$
8(b)(ii)	Giant covalent/ macromolecule		1	$\begin{gathered} \text { 3.1.1 } \\ \text { AO1 } \end{gathered}$
8(b)(iii)	Strong covalent bonds Hard to break		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .1 \\ & \text { AO3 } \end{aligned}$

Skills box answers:

a) $a b^{2}=1.538 \times 10^{4} \times 15.98704=245880.675 \ldots=245900$ (to 4 s.f.)
b) $a+b+c=1.538 \times 10^{4}+15.98704+19=15414.9870 \ldots=15000$ (2 to s.f.))
c) $d \times(b+c)=3 \times 10^{-6} \times(15.98704+19)=0.000104961 \ldots=0.0001=1$ (to 1 s.f.)). Standard form is required.
d) $\log _{10} b=\log _{10} 15.98704=1.203768061578 \ldots=1.203768$ (to 7 s.f.))
e) $10^{d}=10^{3 \times 10^{-6}}=1.0000069077 \ldots=1$ (to 1 s.f.))
© Oxford University Press www.oxfordsecondary.com

