A Level OCR Chemistry Chapter 26 – answers

Question		Answer	rs		Extra information	Mark	AO Spec reference
1(a)	A – hydrogen bonding B – permanent dipole- dipole forces			Allow van der Waal's forces	1 1	AO2 2.2.2k	
1(b)(i)	Add bromine water to solution of phenol				Allow: add neutral iron(III) chloride solution	1	AO1 6.1.1i
1(b)(ii)	Bromine decolorised and white precipitate formed				White precipitate is essential/ neutral iron(III) chloride gives purple coloration	1	AO1 6.1.1i
1(b)(iii)	$C_6H_5OH(aq) + 3Br_2(aq) \rightarrow C_6H_2Br_3OH(s) + 3HBr(aq)$			No mark for iron(III) chloride equation	1	AO1 6.1.1i	
1(c)	A – 40s B – 15s The more polar A will be retained for longer on the polar stationary phase			Need both times for mark	1	AO1 6.3.1b AO2 6.3.1b	
1(d)	Total area of peaks = A($\frac{1}{2} \times 10 \times 3$) + B ($\frac{1}{2} \times 10 \times 8$) = 55 A - 27.3% B - 72.7%			Give 2 marks if these answers are given	1	AO3 6.3.1b	
2(a)		Carbon	Hydrogen	Oxygen			A01
	Number of moles	58.88/12=4.91	9.80/1=9.80	31.37/16=1.96			2.1.30,
	Relative number of atoms	4.91/1.96 = 2.50 5	9.80/1.96=5 10	1.96/1.96=1 2			4.2.4f;
	The empirical formula = $C_5H_{10}O_2$ From molecular ion peak; M_r = 102 = empirical formula mass Therefore, molecular formula = $C_5H_{10}O_2$				1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Chapter 26 – answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)	The 3 possible compounds are: $CH_3COOCH_2CH_2CH_3$ $CH_3CH_2COOCH_2CH_3$ $CH_3CH_2COOCH_2CH_3$ There are a maximum 3 marks for each ester. Chemically different = different environments C is $CH_3CH_2CH_2COOCH_3$ Reasons: • <u>Singlet</u> at $\delta = 3.65$ ppm is for the OCH ₃ protons with zero chemically different protons on an adjacent carbon. • The <u>sextet</u> at $\delta = 2.23$ ppm is due the $COCH_2CH_2CH_3$ because there are five chemically different protons on adjacent two carbons producing spin-spin coupling. • The <u>triplet</u> at $\delta = 1.63$ ppm is due to the $CO-CH_2$ - protons because of the two chemically different protons on the adjacent -CH ₂ - group.	The splitting patterns must be identified Allow sextuplet	3×3	AO3 6.1.3c AO3 6.3.2b
	 D is CH₃CH₂COOCH₂CH₃ Reasons: There are no singlets on the spectrum The <u>quadruplet</u> at δ =4.15 ppm is due the OCH₂- protons being split by the three adjacent, chemically different protons on the -CH₃ group. The <u>quadruplet</u> at δ = 2.25 ppm is due the COCH₂- protons being split by the three adjacent, chemically different protons on the -CH₃ group Reference to either of the triplets at δ = 0.95 ppm or δ = 1.05 ppm due to splitting by two chemically different protons on adjacent -CH₂- group. 	Do not award mark for the triplet at δ = 0.93ppm because it does not help in identification of the molecule. Maximum of 3 marks awarded for D This is awarded because the other 2 choices do have singlets Allow quartet		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Chapter 26 – answers

If do not get full marks then award 1 mark if mention <i>n</i> +1 rule and		
spin-spin coupling in the correct context.		
	1 1	AO2 6.3.2a
Allow nitrating reagent	1 1	AO1 6.1.1d
	1	AO1 6.1.1d
Names not required for mark	1+1+1	AO1 6.1.1k

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Chapter 26 – answers

Answers	Extra information	Mark	AO Spec reference
1,2-dinitrobenzene will give three peaks 1,3-dinitrobenzene will give four peaks 1,4-dinitrobenzene will give two peaks		1 1 1	AO2 6.3.2a
1, 3-dinitrobenzene The nitro (-NO ₂) group is 3-directing	Allow meta-directing	1 1	AO2 6.3.2a
F is 2-methylbutan-1-ol It is a alcohol because its infrared spectrum shows a peak at 3200-3600 cm ⁻¹ And it can be oxidised to a carboxylic acid because the product of oxidation, has a peak at 1700 cm ⁻¹ for the C=O group and a broad peak at 2500-3300 cm ⁻¹ – the -OH group of a carboxylic acid. 2-methylbutan-1-ol has a chiral carbon and therefore can exhibit optical isomerism.	Allow contains -CH ₂ OH group	1 1 1	AO3 4.1.3c; 4.2.1c; 6.2.2c and d; 6.3.2b-e;
Correct structure of 2-methylbutanoic acid $\downarrow \downarrow $		1 1 1 1 1 1 1	AO3 4.2.1c; 4.1.3c; 6.3.2e (iii and iv)
	Answers1,2-dinitrobenzene will give three peaks1,3-dinitrobenzene will give four peaks1,4-dinitrobenzene will give two peaks1, 3-dinitrobenzeneThe nitro (-NO2) group is 3-directingF is 2-methylbutan-1-olIt is a alcohol because its infrared spectrum shows a peak at 3200-3600 cm ⁻¹ And it can be oxidised to a carboxylic acid because the product of oxidation, hasa peak at 1700 cm ⁻¹ for the C== O group and a broad peak at 2500-3300 cm ⁻¹ - the-OH group of a carboxylic acid.2-methylbutan-1-ol has a chiral carbon and therefore can exhibit optical isomerism.Correct structure of 2-methylbutanoic acid $\downarrow_{H_3C} = \begin{pmatrix} CH_2 \\ DCH_3 \end{pmatrix}$ There will be four sets of peaks because there are four different environments for protonsOne doublet from three hydrogen atoms on methyl group attached to carbon 2 One sextet from one hydrogen atoms on carbon 3 One triplet from three hydrogen atoms on carbon 4Correct explanation or reference at least once to <i>n</i> +1 rule	Image: AnswersExtra information1,2-dinitrobenzene will give three peaks 1,3-dinitrobenzene will give four peaks 1,4-dinitrobenzene will give two peaksAllow meta-directing1,3-dinitrobenzene The nitro (-NO_2) group is 3-directingAllow meta-directingF is 2-methylbutan-1-ol tt is a alcohol because its infrared spectrum shows a peak at 3200-3600 cm ⁻¹ And it can be oxidised to a carboxylic acid because the product of oxidation, has a peak at 1700 cm ⁻¹ for the C = O group and a broad peak at 2500-3300 cm ⁻¹ - the -OH group of a carboxylic acid. 2-methylbutan-1-ol has a chiral carbon and therefore can exhibit optical isomerism.Allow contains -CH_2OH groupCorrect structure of 2-methylbutanoic acidHas a chiral carbon and therefore can exhibit optical isomerism.Has a chiral carbon and therefore can exhibit optical isomerism.One doublet from three hydrogen atoms on methyl group attached to carbon 2 One sextet from one hydrogen atoms on carbon 2 One pentuplet/quintet/ from two hydrogen atoms on carbon 3 One triplet from three hydrogen atoms on carbon 4 Correct explanation or reference at least once to <i>n</i> +1 ruleHas defined to carbon 2 Or a carbon at least once to <i>n</i> +1 rule	AnswersExtra informationMark1,2-dinitrobenzene will give three peaks 1,3-dinitrobenzene will give tow peaks1 1 11 1 11,3-dinitrobenzene will give two peaks1 1 11 11,3-dinitrobenzene will give two peaks1 1 111,3-dinitrobenzene mill give two peaks1 111,3-dinitrobenzene The nitro (-NQ ₂) group is 3-directingAllow meta-directing1 1 1F is 2-methylbutan-1-0 It is a alcohol because its infrared spectrum shows a peak at 3200-3600 cm ⁻¹ And it can be oxidised to a carboxylic acid because the product of oxidation, has a peak at 1700 cm ⁻¹ for the C=O group and a broad peak at 2500-3300 cm ⁻¹ - the -OH group of a carboxylic acid. 2-methylbutan-1-01 has a chiral carbon and therefore can exhibit optical isomerism.Allow contains -CH ₂ OH group 1 1 1Correct structure of 2-methylbutanoic acid1 I I I I I I I I I I I I I

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Chapter 26 – answers

Question	Answers	Extra information	Mark	AO Spec reference
4(c)	H_3C CH_2 H_2C CH_3	1 mark for mirror images1 for 3D representation	2	AO2 6.2.2c
	HOH_2C H_{CH_3} H_{3C} H_{3C} H_{2OH}	Allow C_2H_5 - for - CH_2CH_3		
5(a)	2-amino-4-methylpentanoic acid		1	AO1 4.1.1a
5(b)	Leucine: five peaks Isoleucine: six peaks	Do not allow – they will give different numbers of peaks.	1	AO2 6.3.2a;
5(c)(i)	 This refers to the proton on carbon-2 of the chain (next to COOH group) There are two chemically different protons on the adjacent carbon. So applying the <i>n</i>+1 rule it will split into a triplet. The integration shows that it is just one proton There are six protons responsible for the peak These protons are the two-CH₃ (methyl) groups They are split into a doublet spin-spin coupling with the CH proton on the adjacent carbon 		1 1 1 1 1 1	AO3 6.3.2b
5(c)(ii)	The proton responsible for this is the CH proton on carbon 2 of the chain It has one proton on the adjacent carbon atom and therefore is split into a doublet		1 1	AO3 6.3.2b
5(c)(d)	They have very similar chemical structures Therefore they will interact equally strongly with the stationary phase of the column or tlc plate and move with similar rate/speed	Allow – they will have very similar retention times	1 1	AO2 6.3.1b
6(a)	2-chloropropanoic acid (CH $_3$ CHClCOOH) and aluminium chloride (halogen carrier)	Do not accept just halogen carrier	1 1	AO2 6.1.1d
6(b)(i)	Proton on C4 Peak is due to one proton Quadruplet due to spin-spin coupling with 3 protons on adjacent C5		1 1 1	AO3 6.3.2d

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Chapter 26 – answers

Question	Answers	Extra information	Mark	AO Spec reference
6(b)(ii)	2 protons on C3 Doublet due to spin-spin coupling with one proton on adjacent C2		1 1 1	AO3 6.3.2d
6(b)(c)	Ibuprofen has ten carbons in different environments The impurity has twelve carbons in different environments		1 1	AO2 6.3.2c

۲

Skills box answers:

۲

1 a) 2.18 (to 3 s.f.) **b**) 4.45 **c**) 4.13 **d**) -32.0 **e**) 1.30 **f**) 0.477 **g**) 1.78 **2 a**) $-w = \log_{10} 3.2 \times 10^{-13} = -12.5 \therefore w = 12.5$ **b**) $e^x = \frac{1250}{50} = 25 \therefore x = \ln(25) \Rightarrow \therefore x = 3.22$ **c**) $y - 3 = \log_{10} 316 = 2.50y = 3 + 2.5 = 5.5$ **d**) $7.50e^{-\frac{1000}{z}} = 1.37 \times 10^{-1}$ $e^{-\frac{1000}{z}} = \frac{1.37 \times 10^{-1}}{7.5} = 0.018266...$ $-\frac{1000}{z} = \ln 0.018266.. = -4.003$ $\therefore z = -\frac{1000}{4.003} = 250$

© Oxford University Press www.oxfordsecondary.com