A Level OCR Chemistry

Chapter 26 - answers

Question	Answers				Extra information	Mark	AO Spec reference
1(a)	A - hydrogen bonding B - permanent dipole- dipole forces				Allow van der Waal's forces	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 2.2.2k } \end{gathered}$
1(b)(i)	Add bromine water to solution of phenol				Allow: add neutral iron(III) chloride solution	1	$\begin{gathered} \text { AO1 } \\ \text { 6.1.1i } \end{gathered}$
1(b)(ii)	Bromine decolorised and white precipitate formed				White precipitate is essential/ neutral iron(III) chloride gives purple coloration	1	$\begin{aligned} & \text { AO1 } \\ & \text { 6.1.1i } \end{aligned}$
1(b)(iii)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+3 \mathrm{Br}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}(\mathrm{s})+3 \mathrm{HBr}(\mathrm{aq})$				No mark for iron(III) chloride equation	1	$\begin{gathered} \mathrm{AO1} \\ \text { 6.1.1i } \end{gathered}$
1(c)	$\begin{aligned} & A-40 s \\ & B-15 s \end{aligned}$ The more polar A will be retained for longer on the polar stationary phase				Need both times for mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 6.3.1b } \\ \text { AO2 } \\ 6.3 .1 \mathrm{~b} \end{gathered}$
1(d)	$\begin{aligned} & \text { Total area of peaks }=A(1 / 2 \times 10 \times 3)+B(1 / 2 \times 10 \times 8) \\ &=55 \\ & A-27.3 \% \quad B-72.7 \% \end{aligned}$				Give $\mathbf{2}$ marks if these answers are given	1 1	$\begin{gathered} \text { AO3 } \\ \text { 6.3.1b } \end{gathered}$
2(a)		Carbon	Hydrogen	Oxygen			$\begin{gathered} \text { AO1 } \\ \text { 2.1.3c; } \end{gathered}$
	Number of moles	58.88/12 = 4.91	$9.80 / 1=9.80$	$31.37 / 16=1.96$			
	Relative number of atoms	$\begin{aligned} & 4.91 / 1.96=2.50 \\ & 5 \end{aligned}$	$\begin{aligned} & 9.80 / 1.96=5 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.96 / 1.96=1 \\ & 2 \end{aligned}$			4.2.4f;
	The empirical formula $=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ From molecular ion peak; $M_{\mathrm{r}}=102$ = empirical formula mass Therefore, molecular formula $=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$					1 1	

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 26 - answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)	The 3 possible compounds are: $\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3} \end{aligned}$ There are a maximum 3 marks for each ester. Chemically different \equiv different environments C is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ Reasons: - Singlet at $\delta=3.65 \mathrm{ppm}$ is for the OCH_{3} protons with zero chemically different protons on an adjacent carbon. - The sextet at $\delta=2.23 \mathrm{ppm}$ is due the $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ because there are five chemically different protons on adjacent two carbons producing spin-spin coupling. - The triplet at $\delta=1.63 \mathrm{ppm}$ is due to the $\mathrm{CO}-\mathrm{CH}_{2}$ - protons because of the two chemically different protons on the adjacent - CH_{2} - group. D is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ Reasons: - There are no singlets on the spectrum - The quadruplet at $\delta=4.15 \mathrm{ppm}$ is due the OCH_{2} - protons being split by the three adjacent, chemically different protons on the $-\mathrm{CH}_{3}$ group. - The quadruplet at $\delta=2.25 \mathrm{ppm}$ is due the COCH_{2} - protons being split by the three adjacent, chemically different protons on the $-\mathrm{CH}_{3}$ group - Reference to either of the triplets at $\delta=0.95 \mathrm{ppm}$ or $\delta=1.05 \mathrm{ppm}$ due to splitting by two chemically different protons on adjacent - CH_{2} - group.	The splitting patterns must be identified Allow sextuplet Do not award mark for the triplet at $\delta=0.93 \mathrm{ppm}$ because it does not help in identification of the molecule. Maximum of 3 marks awarded for D This is awarded because the other 2 choices do have singlets Allow quartet	3×3	$\begin{gathered} \mathrm{AO3} \\ 6.1 .3 \mathrm{C} \\ \\ \mathrm{AO3} \\ 6.3 .2 \mathrm{~b} \end{gathered}$

A Level OCR Chemistry

Chapter 26 - answers

Question	Answers	Extra information	Mark	AO Spec reference
	E is $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Reasons: - The singlet at $\delta=2.05$ is due to the COCH_{3} protons with zero chemically different protons on an adjacent carbon. - The sextet at $\delta=1.85 \mathrm{ppm}$ is due to the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ protons and the splitting is caused by spin-spin coupling with five ($n+1$ rule) chemically different protons on adjacent carbons. - The triplet at $\delta=4.15 \mathrm{ppm}$ is due to the OCH_{2} - protons with the two CH_{2} protons on the adjacent carbon causing the splitting.	If do not get full marks then award 1 mark if mention $n+1$ rule and spin-spin coupling in the correct context.		
3(a)	The 2-chloromethylbenzene has carbons in seven different environments / will give seven peaks in the ${ }^{13} \mathrm{C}$-NMR spectrum. The 4-chloromethylbenzene has carbons in five different environments / will give five peaks in the ${ }^{13} \mathrm{C}$-NMR spectrum.		1 1	$\begin{gathered} \text { AO2 } \\ 6.3 .2 a \end{gathered}$
3(b)(i)	Sulfuric acid - catalyst Nitric acid supplies/is a source of nitronium ions	Allow nitrating reagent	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 6.1.1d } \end{gathered}$
3(b)(ii)	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$		1	$\begin{gathered} \text { AO1 } \\ \text { 6.1.1d } \end{gathered}$
3(c)(i)		Names not required for mark	1+1+1	$\begin{gathered} \text { AO1 } \\ \text { 6.1.1k } \end{gathered}$

[^0]
A Level OCR Chemistry

Chapter 26 - answers

Question	Answers	Extra information	Mark	AO Spec reference
3(c)(ii)	1,2-dinitrobenzene will give three peaks 1,3-dinitrobenzene will give four peaks 1,4-dinitrobenzene will give two peaks		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 6.3.2a } \end{gathered}$
3(c)(iii)	1, 3-dinitrobenzene The nitro $\left(-\mathrm{NO}_{2}\right)$ group is 3-directing	Allow meta-directing	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 6.3 .2 a \end{gathered}$
4(a)	F is 2-methylbutan-1-ol It is a alcohol because its infrared spectrum shows a peak at $3200-3600 \mathrm{~cm}^{-1}$ And it can be oxidised to a carboxylic acid because the product of oxidation, has a peak at $1700 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{O}$ group and a broad peak at $2500-3300 \mathrm{~cm}^{-1}$ - the -OH group of a carboxylic acid. 2-methylbutan-1-ol has a chiral carbon and therefore can exhibit optical isomerism.	Allow contains - $\mathrm{CH}_{2} \mathrm{OH}$ group	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	AO3 4.1.3c; 4.2.1c; 6.2.2c and d; 6.3.2b-e;
4(b)	Correct structure of 2-methylbutanoic acid There will be four sets of peaks because there are four different environments for protons One doublet from three hydrogen atoms on methyl group attached to carbon 2 One sextet from one hydrogen atom on carbon 2 One pentuplet/quintet/ from two hydrogen atoms on carbon 3 One triplet from three hydrogen atoms on carbon 4 Correct explanation or reference at least once to $n+1$ rule		1 1 1 1 1 1 1	AO3 4.2.1c; 4.1.3c; 6.3.2e (iii and iv)

A Level OCR Chemistry

Chapter 26 - answers

Question	Answers	Extra information	Mark	AO Spec reference
4(c)		1 mark for mirror images 1 for 3D representation Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ - for $-\mathrm{CH}_{2} \mathrm{CH}_{3}$	2	$\begin{gathered} \text { AO2 } \\ 6.2 .2 \mathrm{C} \end{gathered}$
5(a)	2-amino-4-methylpentanoic acid		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1a } \end{gathered}$
5(b)	Leucine: five peaks Isoleucine: six peaks	Do not allow - they will give different numbers of peaks.	1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 6.3.2a; } \end{gathered}$
5(c)(i)	I This refers to the proton on carbon-2 of the chain (next to COOH group) There are two chemically different protons on the adjacent carbon. So applying the $n+1$ rule it will split into a triplet. The integration shows that it is just one proton II There are six protons responsible for the peak These protons are the two $-\mathrm{CH}_{3}$ (methyl) groups They are split into a doublet spin-spin coupling with the CH proton on the adjacent carbon		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 6.3.2b } \end{gathered}$
5(c)(ii)	The proton responsible for this is the CH proton on carbon 2 of the chain It has one proton on the adjacent carbon atom and therefore is split into a doublet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 6.3 .2 \mathrm{~b} \end{gathered}$
5(c)(d)	They have very similar chemical structures Therefore they will interact equally strongly with the stationary phase of the column or tlc plate and move with similar rate/speed	Allow - they will have very similar retention times	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 6.3 .1 \mathrm{~b} \end{gathered}$
6(a)	2-chloropropanoic acid $\left(\mathrm{CH}_{3} \mathrm{CHClCOOH}\right)$ and aluminium chloride (halogen carrier)	Do not accept just halogen carrier	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 6.1.1d } \end{gathered}$
6(b)(i)	Proton on C4 Peak is due to one proton Quadruplet due to spin-spin coupling with 3 protons on adjacent C5		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ \text { 6.3.2d } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 26 - answers

Question	Answers	Extra information	Mark
Spec reference			
6(b)(ii)	2 protons on C3 Doublet due to spin-spin coupling with one proton on adjacent C2	AO3 6.3 .2 d	
6(b)(c)	lbuprofen has ten carbons in different environments The impurity has twelve carbons in different environments	1	1

Skills box answers:
1 a) 2.18 (to 3 s.f.)
b) 4.45
c) 4.13
d) -32.0
e) 1.30
f) 0.477
g) 1.78

2 a) $-w=\log _{10} 3.2 \times 10^{-13}=-12.5 \therefore w=12.5$
b) $e^{x}=\frac{1250}{50}=25 \therefore x=\ln (25) \Rightarrow \therefore x=3.22$
c) $y-3=\log _{10} 316=2.50 y=3+2.5=5.5$
d) $7.50 e^{-\frac{1000}{z}}=1.37 \times 10^{-1}$
$e^{-\frac{1000}{z}}=\frac{1.37 \times 10^{-1}}{7.5}=0.018266 \ldots$.
$-\frac{1000}{z}=\ln 0.018266 . .=-4.003$
$\therefore z=-\frac{1000}{4.003}=250$

[^0]: © Oxford University Press www.oxfordsecondary.com

