A Level OCR Chemistry

Chapter 25 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$		1	6.2.5, 6.1.3
1(b)(i)			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	6.2.5, 6.1.3
1(b)(ii)	Choose any one of the following: - Use TLC - Explanation: product should only show as one spot on TLC plate/have the same R_{f} value as known samples/data - Melting point analysis - Explanation: melting point should be sharp and close to known data	Only one method needed, but explanation needed for second mark	2	6.2.5
1(c)(i)			1	4.1.1, M4.2
1(c)(ii)	Anhydride less easily hydrolysed/reaction less violent/no corrosive/no toxic HCl fumes given off/anhydride cheaper		1	6.2.5
2(a)(i)			1	6.2.5, M4.2
2(a)(ii)	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$OR acidified potassium dichromate		1	6.2.5
2(a)(iii)	Propanoic acid		1	6.2.5

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 25 - answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(i)	NaBH_{4}		1	6.2.5
2(b)(ii)	Reduction		1	6.2.5
2(b)(iii)			1	4.1.1, M4.2
2(c)(i)	$\mathrm{H}_{2} \mathrm{SO}_{4}$ OR HCl	Only one acid needed	1	6.2.5
2(c)(ii)	Dilute acid AND heat		1	6.2.5
2(c)(iii)			1	6.2.5
3(a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}$	1 mark for each correct side of the reaction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6.2.1
3(b)			1 1	6.2.5
3(c)	The reduction from a nitrile/ part b) is likely to give a greater yield as it has only one product		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6.2.5
4(a)(i)	HCN OR KCN/HCl		1	6.2.5
4(a)(ii)	Nucleophilic addition		1	6.2.5

A Level OCR Chemistry

Chapter 25 - answers

Question	Answers	Extra information	Mark	AO Spec reference
4(a)(iii)	M_{r} butanone $=72$ and M_{r} hydoxynitrile $=99$ 5 g butanone $=5 / 72=0.0694$ moles (Moles butanone $=$ moles hydroxynitrile) Mass hydroxynitrile $=0.0694 \times 99=6.87 \mathrm{~g}$ theoretical yield actual yield $=0.64 \times 6.87=4.40 \mathrm{~g}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 2.1.3, M0.2, M0.1, } \\ & \text { M0.0 } \end{aligned}$
4(b)(i)	NaBH_{4}		1	6.2.5
4(b)(ii)	Racemic mixture formed/50:50/ equal amounts of enantiomers		1	6.2.5
4(c)(i)			1	4.1.1, M4.2
4(c)(ii)	It involves the loss/removal of water		1	6.2.5
5(a)			3	6.1.1
5(b)(i)	Nucleophilic addition		1	6.2.5
5(b)(ii)	NaBH_{4}		1	6.2.5
5(b)(iii)	Q contains asymmetrical carbon/chiral carbon/four different groups bonded to same carbon atom		1	6.2.2
5(c)(i)	$\begin{aligned} & \mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{OR} \mathrm{H}_{2} \mathrm{SO}_{4} \\ & \text { Heat } \end{aligned}$		1	6.2.5
5(c)(ii)	Cis-trans/ geometrical isomerism		1	4.1.3

A Level OCR Chemistry

Chapter 25 - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
5(c)(iii)	Double bond $/ \mathrm{C}=\mathrm{C}$ bond and two different groups attached to each of the Cs in the double bond		1	4.1.3
6(a)	2-methylpropene The absorption at $1650 \mathrm{~cm}^{-1}$ indicates an alkene $/ \mathrm{C}=\mathrm{C}$ present	Can also show this using a diagram	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6.2.5
6(b)(i)	HBr	All methods that would allow HBr to form in situ e.g. NaBr and $\mathrm{H}_{2} \mathrm{SO}_{4}$	1	6.2.5
6(b)(ii)		1 mark for: curly arrow from π-bond to $\mathrm{H}^{\delta+}$ Dipoles on the $\mathrm{H}-\mathrm{Br}$ bond curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br^{8-} Curly arrow from Br^{-}to C^{+}	4	4.1.3
6(b)(iii)	P gives 3 peaks (in its NMR spectrum) R gives 1 peak (in its NMR spectrum)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6.3.2

Skills box answers:

a)

b) So no product or reactant is lost by evaporation

A Level OCR Chemistry

Chapter 25 - answers

c) (Measure and record the mass of a dry, clean weighing boat (or another suitable container))

- Add to salicylic acid to the weigh boat. Record mass of boat + solid.
- Transfer the solid to the flask for refluxing
- Re-weigh the weigh boat. Record mass.
- Calculate (mass of boat + solid) - (boat after transferring solid)
d) Place solid in melting point tube.
- Place in oil / melting point apparatus and heat gently
- Record temperature at which solid starts melting and stops melting
- Compare melting point to values in data book / from tables / compare to other results.

