

Chapter 25 – answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	CH ₃ OH + CH ₃ CH ₂ COOH → CH ₃ CH ₂ COOCH ₃ + H ₂ O		1	6.2.5, 6.1.3
1(b)(i)	$CH_{3}OH + CH_{3}CH_{2}COOH \rightarrow CH_{3}CH_{2}COOCH_{3} + H_{2}O$ $(CH_{3}CH_{2}) \rightarrow CH_{3}CH_{2} \rightarrow$		1 1 1	6.2.5, 6.1.3
1(b)(ii)	 Choose any one of the following: Use TLC Explanation: product should only show as one spot on TLC plate/have the same R_f value as known samples/data Melting point analysis Explanation: melting point should be sharp and close to known data 	Only one method needed, but explanation needed for second mark	2	6.2.5
1(c)(i)	$CH_3CH_2 - C$ $CH_3CH_2 - C$ O		1	4.1.1, M4.2
1(c)(ii)	Anhydride less easily hydrolysed/reaction less violent/no corrosive/no toxic HCl fumes given off/anhydride cheaper		1	6.2.5
2(a)(i)	H H O H-C-C-C H H OH		1	6.2.5, M4.2
2(a)(ii)	$ m K_2Cr_2O_7$ / $ m H^+$ OR acidified potassium dichromate		1	6.2.5
2(a)(iii)	Propanoic acid		1	6.2.5

 $[\]hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 25 – answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(i)	NaBH ₄		1	6.2.5
2(b)(ii)	Reduction		1	6.2.5
2(b)(iii)	H H H 		1	4.1.1, M4.2
2(c)(i)	H ₂ SO ₄ OR HCl	Only one acid needed	1	6.2.5
2(c)(ii)	Dilute acid AND heat		1	6.2.5
2(c)(iii)	CH_3CH_2 — C CH_3 CH_3 CH_3 CH_3		1	6.2.5
3(a)	CH ₃ CH ₂ Cl + 2 NH ₃ → CH ₃ CH ₂ NH ₂ + NH ₄ Cl	1 mark for each correct side of the reaction	1 1	6.2.1
3(b)	CH ₃ CN AND H ₂ /Ni		1 1	6.2.5
3(c)	The reduction from a nitrile/ part b) is likely to give a greater yield as it has only one product		1 1	6.2.5
4(a)(i)	HCN OR KCN/HCl		1	6.2.5
4(a)(ii)	Nucleophilic addition		1	6.2.5

© Oxford University Press www.oxfordsecondary.com

Chapter 25 - answers

Question	Answers	Extra information	Mark	AO Spec reference
4(a)(iii)	$M_{\rm r}$ butanone = 72 and $M_{\rm r}$ hydoxynitrile = 99 5 g butanone = 5 / 72 = 0.0694 moles (Moles butanone = moles hydroxynitrile)		1 1	2.1.3, M0.2, M0.1, M0.0
	Mass hydroxynitrile = $0.0694 \times 99 = 6.87$ g theoretical yield actual yield = $0.64 \times 6.87 = 4.40$ g		1 1	
4(b)(i)	NaBH ₄		1	6.2.5
4(b)(ii)	Racemic mixture formed / 50:50 / equal amounts of enantiomers		1	6.2.5
4(c)(i)	H H H H		1	4.1.1, M4.2
4(c)(ii)	It involves the loss/removal of water		1	6.2.5
5(a)	$[E^+] \qquad \qquad E \qquad \qquad (+H^+)$		3	6.1.1
5(b)(i)	Nucleophilic addition		1	6.2.5
5(b)(ii)	NaBH ₄		1	6.2.5
5(b)(iii)	Q contains asymmetrical carbon/chiral carbon/four different groups bonded to same carbon atom		1	6.2.2
5(c)(i)	$ m H_3PO_4$ OR $ m H_2SO_4$ Heat		1	6.2.5
5(c)(ii)	Cis-trans / geometrical isomerism		1	4.1.3

 $[\]hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 25 – answers

Question	Answers	Extra information	Mark	AO Spec reference
5(c)(iii)	Double bond / C = C bond and two different groups attached to each of the Cs in the double bond		1	4.1.3
6(a)	2-methylpropene The absorption at 1650 cm $^{-1}$ indicates an alkene / C= C present	Can also show this using a diagram	1 1	6.2.5
6(b)(i)	HBr	All methods that would allow HBr to form in situ e.g. NaBr and $\rm H_2SO_4$	1	6.2.5
6(b)(ii)	H ₃ C OH NH ₂	1 mark for: curly arrow from π -bond to $H^{\delta+}$ Dipoles on the H —Br bond curly arrow from H —Br bond to $Br^{\delta-}$ Curly arrow from Br^- to C^+	4	4.1.3
6(b)(iii)	P gives 3 peaks (in its NMR spectrum) R gives 1 peak (in its NMR spectrum)		1 1	6.3.2

Skills box answers:

a)

b) So no product or reactant is lost by evaporation

© Oxford University Press www.oxfordsecondary.com

Chapter 25 - answers

- Add to salicylic acid to the weigh boat. Record mass of boat + solid.
- Transfer the solid to the flask for refluxing
- Re-weigh the weigh boat. Record mass.
- Calculate (mass of boat + solid) (boat after transferring solid)
- d) Place solid in melting point tube.
 - Place in oil / melting point apparatus and heat gently
 - Record temperature at which solid starts melting and stops melting
 - Compare melting point to values in data book / from tables / compare to other results.

