A Level OCR Chemistry

Chapter 22 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)(i)	Acidified potassium dichromate (VI) AND reflux OR $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ AND reflux	Must state acidified, or have acid as reagent too for the mark, and must have reflux, not distillation	1	4.2.1
1(a)(ii)	Pentanoic acid		1	4.1.1
1(b)			1	6.3.1, M4.2
1(c)	```Mrentan-1-ol = 88 (g mol Moles pentan-1-ol = 0.151 g/88 g mol}\mp@subsup{}{}{-1}=0.00172(mol Ratio alcohol : ester = 1:1 Theoretical moles ester = 0.00172 (mol) Mr ester = 130 (g mol Theoretical mass ester =0.00172 }\times130=0.2236\textrm{g % yield = actual/theoretical = 0.161 g / 0.2236 g x 100 = 72%```		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 2.1.3, M0.0, } \\ & \text { M0.1, M0.2 } \end{aligned}$
2(a)(i)	It is a renewable fuel		1	HSW12
2(a)(ii)			1	6.1.3
2(b)(i)	Dilute acid, heat	Need both reagent and condition for mark	1	6.1.3

A Level OCR Chemistry

Chapter 22 - answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b) (ii)		Need to show all bonds for the mark.	1	6.1.3, M4.2
2(b)(iii)	A straight-chain molecule will have a higher boiling point Molecules will be able to get closer together so can form stronger dipoles Meaning more energy is needed to overcome intermolecular attractions upon melting		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2.2.2
3(a)(i)	SOCl_{2}		1	6.1.3
3(a)(ii)			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	6.1.3
3(b)	M_{r} compound $\mathrm{F}=78.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Moles compound $\mathrm{F}=1.727 \mathrm{~g} / 78.5 \mathrm{~g} \mathrm{~mol}^{-1}=0.022 \mathrm{~mol}$ Ratio compound F: ester $=1: 1$ Moles ester G $=0.022 \mathrm{~mol}$ M_{r} ester $\mathrm{G}=88\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Theoretical mass ester $G=1.936 \mathrm{~g}$ Percentage yield $=1.540 / 1.936 \times 100=80 \%(79.5 \%)$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2.1.3, M0.0, M0.1, M0.2, M1.1, M2.2
4(a)	Add deionised water to product, aspirin will precipitate Filter off precipitate Wash residue with deionised water Leave to dry		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	PAG6

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 22 - answers

Question	Answers	Extra information	Mark	AO Spec reference
4(b)	M_{r} of aspirin $=168 \mathrm{~g} \mathrm{~mol}^{-1}$ M_{r} ethanoic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$ Total mass $=168+60=228$ Atom economy $=168 / 228=0.74$ OR 74\%			$\begin{aligned} & \text { 2.1.3, M0.1, } \\ & \text { M0.2, M1.1 } \end{aligned}$
4(c)	Any one of: Less corrosive Not as readily hydrolysed Doesn't produce corrosive fumes of hydrogen chloride		1	PAG 6
5(a)(i)		Must show all bonds	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	4.1.1, M4.2,
5(a)(ii)	$\begin{aligned} & \mathrm{C}=\text { O peak } 1630-1820 \mathrm{~cm}^{-1} \\ & \mathrm{C}-\text { O peak at } 1000-1300 \mathrm{~cm}^{-1} \end{aligned}$		1	4.2.4
5(b)(i)	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	Can be written or displayed formula, functional groups must be clear	1	6.1.3
5(b)(ii)	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	Can be written or displayed formula, functional groups must be clear	1	6.1.3
5(b)(iii)	Carboxylic acids are able to form hydrogen bonds with the water molecules more readily Because of the presence of the polar carboxyl group / O-H bonds	Polar group carboxyl group, and/ or hydrogen bonds to water molecules can be shown in a diagram for the two marks.		6.1.3

A Level OCR Chemistry

Chapter 22 - answers

\square

Question	Answers	Extra information	Mark	AO Spec reference
6(a)(i)	Recrystallisation: Dissolve impure solid in a minimum volume of hot water/solvent Cool solvent and filter solid Wash with cold water/solvent and dry	Lose 1 mark for every point missed.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	PAG 6
6(a)(ii)	$\begin{aligned} & M_{\mathrm{r}} \mathrm{CH}_{3} \mathrm{COOH}=60 \\ & M_{\mathrm{r}}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg} .4 \mathrm{H}_{2} \mathrm{O}=214.3 \\ & \text { Moles } \mathrm{CH}_{3} \mathrm{COOH}=2.16 / 60=0.036 \mathrm{~mol} \\ & \text { 2:1 ratio } \\ & \text { So theoretical moles }\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg} .4 \mathrm{H}_{2} \mathrm{O}=0.036 / 2=0.018 \mathrm{~mol} \\ & \text { Actual moles }\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg} .4 \mathrm{H}_{2} \mathrm{O}=2.85 / 214.3=0.013299 \mathrm{~mol} \\ & \text { Percentage yield }=\text { actual } / \text { theoretical } \times 100=0.01329 / 0.018 \times 100=73.884 \\ & \% \text { yield }=74(.0) \% \end{aligned}$	Lose ratio mark and answer mark if incorrect ratio of $\mathrm{CH}_{3} \mathrm{COOH}$ to $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg} .4 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 2.1.3, M0.2, } \\ \text { M1.1 } \end{gathered}$
6(a)(iii)	Melting point: Obtain melting point, Compare to known values Pure sample will have a (sharp) melting point close to known value Spectroscopy: Run/collect NMR/IR spectrum, Compare to database/known spectra Spectrum of pure sample will contain same peaks as known, and not others TLC: Run a TLC Compare (R_{f} value) to known data Pure sample will have a very similar R_{f}	Must describe steps of ONE process for $\mathbf{2}$ marks, lose $\mathbf{1}$ mark for each step missed.	2	PAG 6
6(b)(i)	An acid which only partially dissociates into its ions (in water/solution)		1	2.1.4
6(b)(ii)	$K_{\mathrm{a}}=\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$		1	5.1.3
6(b)(iii)	$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CaO} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}$	1 mark for correct species 1 mark for balancing, IGNORE state symbols	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6.1.3

A Level OCR Chemistry

Chapter 22 - answers

Skills box answers:

a) (i) Cyclohexene. $\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$
(ii) cyclohexanecarboxylic acid $2 \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{COO}\right)+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
b) (i) Cyclohexanone and cyclohexanol are flammable and should be kept away from naked flames.
(ii) Fill a beaker with hot water / use a water bath. Place boiling tubes in water bath and leave to a few minutes.

