

Question	Answers	Extra information	Mark	AO Spec reference
1(a)(i)	Acidified potassium dichromate (VI) AND reflux OR $K_2Cr_2O_7/H_2SO_4$ AND reflux	Must state acidified, or have acid as reagent too for the mark, and must have reflux, not distillation	1	4.2.1
1(a)(ii)	Pentanoic acid		1	4.1.1
1(b)			1	6.3.1, M4.2
1(c)	$\begin{split} M_{\rm r} {\rm pentan-1-ol} &= 88({\rm gmol^{-1}}) \\ {\rm Moles} {\rm pentan-1-ol} &= 0.151{\rm g}/88{\rm gmol^{-1}} = 0.00172({\rm mol}) \\ {\rm Ratio} {\rm alcohol} : {\rm ester} &= 1:1 \\ {\rm Theoretical} {\rm moles} {\rm ester} &= 0.00172({\rm mol}) \\ M_{\rm r} {\rm ester} &= 130({\rm gmol^{-1}}) \\ {\rm Theoretical} {\rm mass} {\rm ester} &= 0.00172 \times 130 = 0.2236{\rm g} \\ {\rm \%} {\rm yield} &= {\rm actual/theoretical} = 0.161{\rm g}/0.2236{\rm g} \times 100 = 72\% \end{split}$		1 1 1 1	2.1.3, M0.0, M0.1, M0.2
2(a)(i)	It is a renewable fuel		1	HSW12
2(a)(ii)	$ \begin{array}{c} H = C = O = C = R_{1} \\ H = C = O = C = R_{2} \\ H = C = O = C = R_{2} \\ H = C = O = C = R_{3} \\ H = H \end{array} $		1	6.1.3
2(b)(i)	Dilute acid, heat	Need both reagent and condition for mark	1	6.1.3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Need to show all bonds for the mark.	1	6.1.3, M4.2
2(b)(iii)	A straight-chain molecule will have a higher boiling point Molecules will be able to get closer together so can form stronger dipoles Meaning more energy is needed to overcome intermolecular attractions upon melting		1 1 1	2.2.2
3(a)(i)	SOCl ₂		1	6.1.3
3(a)(ii)	$\begin{array}{c} & & & \\ & & & \\ H_{3}C \\ & & $		1 1 1	6.1.3
3(b)	$\begin{split} M_{\rm r} \mbox{ compound } {\sf F} &= 78.5 \mbox{ (g mol^{-1})} \\ \mbox{Moles compound } {\sf F} &= 1.727 \mbox{ g} / 78.5 \mbox{ g mol^{-1}} &= 0.022 \mbox{ mol} \\ \mbox{Ratio compound } {\sf F} : \mbox{ester } {\sf s} = 1:1 \\ \mbox{Moles ester } {\sf G} &= 0.022 \mbox{ mol} \\ M_{\rm r} \mbox{ester } {\sf G} &= 8.8 \mbox{ (g mol^{-1})} \\ \mbox{Theoretical mass ester } {\sf G} &= 1.936 \mbox{ g} \\ \mbox{Percentage yield } &= 1.540 / 1.936 \times 100 = 80\% \mbox{ (79.5\%)} \end{split}$		1 1 1 1	2.1.3, M0.0, M0.1, M0.2, M1.1, M2.2
4(a)	Add deionised water to product, aspirin will precipitate Filter off precipitate Wash residue with deionised water Leave to dry		1 1 1 1	PAG6

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
4(b)	$M_{\rm r}$ of aspirin = 168 g mol ⁻¹ $M_{\rm r}$ ethanoic acid = 60 g mol ⁻¹ Total mass = 168 + 60 = 228		1	2.1.3, M0.1, M0.2, M1.1
	Atom economy = 168/228 = 0.74 OR 74%		T	
4(c)	Any one of: Less corrosive Not as readily hydrolysed Doesn't produce corrosive fumes of hydrogen chloride		1	PAG 6
5(a)(i)	$\begin{array}{c} H & H \\ H - C - C - C - C \\ H & H \\ H & H \end{array} \xrightarrow{O} H & H \\ O - C - C - H \\ H & H \\ H & H \end{array}$	Must show all bonds	1 1	4.1.1, M4.2,
5(a)(ii)	C=O peak 1630-1820 cm ⁻¹ C—O peak at 1000 – 1300 cm ⁻¹		1	4.2.4
5(b)(i)	CH ₃ COOCH ₂ CH ₃ + NaOH → CH ₃ COONa + CH ₃ CH ₂ OH	Can be written or displayed formula, functional groups must be clear	1	6.1.3
5(b)(ii)	$CH_{3}COOCH_{2}CH_{3} + H_{2}O \rightarrow CH_{3}COOH + CH_{3}CH_{2}OH$	Can be written or displayed formula, functional groups must be clear	1	6.1.3
5(b)(iii)	Carboxylic acids are able to form hydrogen bonds with the water molecules more readily	Polar group carboxyl group, and/ or hydrogen bonds to water	1	6.1.3
	Because of the presence of the polar carboxyl group / O—H bonds	molecules can be shown in a diagram for the two marks.	1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
6(a)(i)	Recrystallisation: Dissolve impure solid in a minimum volume of hot water/solvent Cool solvent and filter solid Wash with cold water/solvent and dry	Lose 1 mark for every point missed.	1 1 1	PAG 6
6(a)(ii)	$\begin{split} M_{\rm r} {\rm CH_3COOH} &= 60 \\ M_{\rm r} ({\rm CH_3COO})_2 {\rm Mg.4H_2O} &= 214.3 \\ {\rm Moles} {\rm CH_3COOH} &= 2.16/60 = 0.036 {\rm mol} \\ 2:1 {\rm ratio} \\ {\rm So \ theoretical \ moles} ({\rm CH_3COO})_2 {\rm Mg.4H_2O} &= 0.036/2 = 0.018 {\rm mol} \\ {\rm Actual \ moles} ({\rm CH_3COO})_2 {\rm Mg.4H_2O} &= 2.85/214.3 = 0.013299 {\rm mol} \\ {\rm Percentage \ yield} &= {\rm actual/theoretical} \times 100 = 0.01329/0.018 \times 100 = 73.884 \\ \% {\rm yield} &= 74 (.0)\% \end{split}$	Lose ratio mark and answer mark if incorrect ratio of CH ₃ COOH to (CH ₃ COO) ₂ Mg.4H ₂ O	1 1 1 1 1	2.1.3, M0.2, M1.1
6(a)(iii)	Melting point: Obtain melting point, Compare to known values Pure sample will have a (sharp) melting point close to known value Spectroscopy: Run/collect NMR/IR spectrum, Compare to database/known spectra Spectrum of pure sample will contain same peaks as known, and not others TLC: Run a TLC Compare (R _f value) to known data Pure sample will have a very similar R _f	Must describe steps of ONE process for 2 marks, lose 1 mark for each step missed.	2	PAG 6
6(b)(i)	An acid which only partially dissociates into its ions (in water/solution)		1	2.1.4
6(b)(ii)	$K_{a} = [CH_{3}CH_{2}COO^{-}][H^{+}]/[CH_{3}CH_{2}COOH]$		1	5.1.3
6(b)(iii)	$2CH_3CH_2COOH + CaO \rightarrow (CH_3CH_2COO)_2Ca + H_2O$	 1 mark for correct species 1 mark for balancing, IGNORE state symbols 	1 1	6.1.3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Skills box answers:

- a) (i) Cyclohexene. $C_6H_{10} + Br_2 \rightarrow C_6H_{10}Br_2$
- (ii) cyclohexanecarboxylic acid $2C_6H_{11}COOH + Na_2CO_3 \rightarrow 2Na(C_6H_{11}COO) + H_2O + CO_2$
- **b)** (i) Cyclohexanone and cyclohexanol are flammable and should be kept away from naked flames.
- (ii) Fill a beaker with hot water / use a water bath. Place boiling tubes in water bath and leave to a few minutes.

۲

 (\bullet)

۲