A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	The energy/enthalpy change when 1 mole gaseous atoms Gain 1 mole of electrons Under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO1 } \end{gathered}$
1(b)	Born-Haber cycle. $\begin{aligned} & \text { 2nd } E_{\mathrm{a}} \mathrm{O}=602+148+738+1450+249-141-3890 \\ & =+844 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 mark for each correct step	6 1 1	$\begin{gathered} 5.2 .1 \\ \text { AO2 } \end{gathered}$
1(c)	Electrons are attracted to nucleus Energy needs to be put in to overcome this attraction/force/bond		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$
2(a)	The enthalpy/energy change when 1 mole Of gaseous atoms Is formed under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO1 } \end{gathered}$
2(b)	$\begin{aligned} & \Delta H=164+549+1064+(2 \times 243)-(2 \times 349)-2150 \\ & =-585 \mathrm{kJmol}^{-1} \end{aligned}$	Allow correct Born-Haber cycle	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5.2 .1 \\ & \text { AO2 } \end{aligned}$
2(c)	Removing an electron from a positive ion More energy required to overcome attraction	Allow reference to smaller radius/ size	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$
2(d)	Bond enthalpy results in 2 moles of Cl atoms being formed So double the atomisation by definition	Allow both correct definitions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$
3(a)	The enthalpy/energy change when one mole of solid ionic compound is formed From its constituent ions in the gas state. Under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5.2 .1 \\ & \text { AO1 } \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
3(b)(i)		Must have state symbols Do not accept multiples	4	$\begin{aligned} & 5.2 .1 \\ & \hline \end{aligned}$
3(b)(ii)	$\begin{aligned} & -616-159-520-79+328=-1046 \\ & -1046 \end{aligned}$	Must have - sign for second mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO2 } \\ \text { MS2.4 } \end{gathered}$
4(a)	The enthalpy/energy change when 1 mole of gaseous ions Are completed surrounded by water To create an infinitely dilute solution	Allow reference to ions "no longer interacting/influencing each other" or WTTE	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	5.2.1
4(b)	Copper and sulphate don't exist in the gas state / impossible to measure Temperature change		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
4(c)(i)			2	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$
4(c)(ii)	This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking.	Partially complete means $3 / 4$ of stage met	6	$\begin{gathered} 5.2 .1 \\ \text { AO3 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer shows some progression between two stages
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.

"a

Indicative content

Stage 1: Measuring out the copper
sulfate and water
1a: uses suitable equipment
(scales balance)
1b: uses named suitable mass
(between $2-8 \mathrm{~g}$) of both salts
1c: evidence of weigh reweigh technique to determine mass of salt delivered
1d: Known volume of water
measured using suitable equipment (measuring cylinder/ pippette)

Stage 2: Determining both enthalpies
2a: simple calorimeter set up (polystyrene cupand lid)
2b: basic method of measuring starting temperature (with
thermometer) over time (min 3 mins) then adding and recording the temperature for a time after (min 4 mins)
2c: acknowledgement that when salt is added temperature should not be recorded
2d: Graphical determination of instantaneous temperature rise by extrapolation

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
		Stage 3: Calcualting $\Delta \mathrm{H}$ 3a: use of $q=m c \theta$ or equivalent 3b: use of M_{r} to find moles and hence ΔH_{1} and ΔH_{2} 3c: Use of hess cycle or $\Delta H_{1}-\Delta H_{2}$		
4(d)	$(-2099)+(-1080)-(-67)=-3112 \mathrm{~kJ} \mathrm{~mol}^{-1}$	Allow correct cycle or diagram +3112 scores 1 mark	2	$\begin{gathered} 5.2 .1 \\ \text { AO2 } \\ \text { MS2.4 } \end{gathered}$
5(a)	The measure of disorder of a system	Reject 'chaos'	1	$\begin{gathered} 5.2 .2 \\ \text { AO1 } \end{gathered}$
5(b)(i)	$\begin{aligned} & \text { Enthalpy change }=\Sigma \Delta_{f} \mathrm{H} \text { products }-\Sigma \Delta_{f} \mathrm{H} \text { reactants } \\ & =(-709+-394+-286)-(-483+-951)=45 \mathrm{kJmol}^{-1} \\ & \text { Entropy change }=\Sigma \text { Sproducts }-\Sigma \text { Sreactants } \\ & =(175+214+70)-(158+102)=199 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \Delta G=\Delta H-T \Delta S \text { OR } 0=45000-199 T \\ & T>45000 / 199 \\ & =226 \mathrm{~K} \end{aligned}$	2 marks for $\Delta \mathrm{H}$ 2 marks for ΔS 2 marks for use of Gibbs equation Allow correct cycle Answer of $225^{\circ} \mathrm{C}$ scores only 5	1 1 1 1 1 1	$\begin{gathered} 5.2 .2 \\ \text { AO2 } \\ \text { MS2.2,2.3,2.4 } \end{gathered}$
5(b)(ii)	Temperature way below freezing. Ethanoic acid will be solid / energy lower than activation energy	Ignore references to water being ice unless specifically referenced in terms of solution	1	$\begin{gathered} 5.2 .2 \\ \text { AO3 } \end{gathered}$

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
6(a)	$\begin{aligned} & \Delta_{L F} \mathrm{H}=-362+(2 x-90)+(2 x-418)+-248-(-142)+-844 \\ & =-2328 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 mark is for overall shape 2 mark is for correct equations $\mathbf{3}$ mark is for doubling K equations 23588 scores all 6 marks only if accompanied by a correct cycle. Without cycle max score is $\mathbf{3}$ Do not penalise scale of lines on Born-Haber cycle An answer of 1850 with cycle scores 3 marks	6	$\begin{gathered} 5.2 .1 \\ \text { MS2.4 } \\ \text { AO2 } \end{gathered}$
6(b)(i)	Oxygen is a gas so more disordered / gas more disordered than solid		1	$\begin{gathered} 5.2 .2 \\ \text { AO3 } \end{gathered}$

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
6(b)(ii)	$\begin{aligned} & \Delta G=\Delta H-T \Delta S \\ & \Delta S=94-(2 \times 67)-(205 / 2)=-142.5 \mathrm{~J} \mathrm{~mol}^{-1} \\ & T=573 \\ & \Delta G=-362-(573 \times-0.1425) \mathrm{OR}^{\Delta}-362 \times 10^{3}-573 \times-142.5 \\ & =-280 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{OR}-280 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ Reaction is feasible/spontaneous as ΔG is less than 0		1 1 1 1 1 1	$\begin{gathered} 5.2 .2 \\ \text { AO2 } \\ \text { MS2.1,2.2,2.3,2.4 } \end{gathered}$
7(a)	Correct axis (T is x-axis Gibbs is y-axis) labelled Suitable scale (plotted points should take up over half the paper) Points plotted accurately Read off temperature from line Temperature $=1112 \mathrm{~K}$	Allow 1 point plotted outside 1 mm Allow 1110-1120 K	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .2 \\ \text { MS3.3 } \end{gathered}$
7(b)	$\begin{aligned} & P V=n R T \\ & n=P V / R T \\ & n=\frac{100000 \times 0.5}{8.31 \times 298}=20.2 \mathrm{moles} \\ & \text { mass }=100.1 \times 20.2=2021 \mathrm{~g} \end{aligned}$	Accept 2.022 kg	1 1 1 1	$\begin{gathered} 2.1 .3 \\ \text { AO2 } \\ \text { MS2.2,2.3,2.4 } \end{gathered}$
7(c)	$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$		1	$\begin{aligned} & \text { 2.1.2 } \\ & \text { AO1 } \end{aligned}$
7(d)	$\begin{aligned} & M_{\mathrm{r}} \mathrm{Ca}(\mathrm{OH})_{2}=40.1+(2 \times 17)=74.1 \\ & 2.28 / 74.1=0.308 \text { moles } \\ & \text { Moles } \mathrm{H}_{2} \mathrm{SO}_{4}=0.308 \text { as 1:1 } \\ & \text { Concentration }=0.0308 / 0.5=0.0616 \end{aligned}$		1 1 1 1	$\begin{gathered} 2.1 .3 \\ \text { AO1 } \\ \text { MS0.2 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
7(e)	$\mathrm{pH}=-\log (0.0616 \times 2)=0.91$	Must be 2 dp .	1	$\begin{gathered} 5.1 .3 \\ \text { MS0.4,2.5 } \\ \text { AO2 } \end{gathered}$
8(a)	Because it is an element		1	$\begin{aligned} & 3.2 .1 \\ & \text { AO1 } \end{aligned}$
8(b)	$\begin{aligned} & \Delta_{r} \mathrm{H}=\Sigma \Delta_{f} \mathrm{H} \text { (products) }-\Sigma \Delta_{f} \mathrm{H} \text { (reactants) } \\ & \Delta H=-111-(-75-242) \\ & (+) 206\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \Delta S=\Sigma S \text { (products) }-\Sigma S(\text { reactants }) \\ & \Delta S=3 \times 131+198-(186+189) \\ & (+) 216 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & (\Delta G=\Delta H-T \Delta S) \\ & =206-(973 \times 0.216) \text { OR } 206 \times 10^{3}-(973 \times 216) \\ & -4.168 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{OR}-4168 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \text { Reaction is feasible as } \Delta G \leq 0 \end{aligned}$	2 marks for ΔH 2 marks for ΔS 2 marks for Gibbs equation including unit conversions 1 mark for valid comment	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 5.2 .2 \\ \text { AO2 } \\ \text { MS3.3 } \end{gathered}$

A Level OCR Chemistry

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
8(d)	Moles steam $=2.70$ Moles CO = 1.30 Moles $\mathrm{H}_{2}=3.90$		1	$\begin{gathered} \text { 5.1.2 } \\ \text { AO2 } \\ \text { MS1.1,2.2,2.3 } \end{gathered}$
			1	
			1	
	Mole fractions$\begin{aligned} & \mathrm{CH}_{4}=0.7 / 8.6=0.0814 \\ & \mathrm{H}_{2} \mathrm{O}=2.7 / 8.6=0.314 \\ & \mathrm{CO}=1.3 / 8.6=0.151 \\ & \mathrm{H}_{2}=3.9 / 8.6=0.453 \end{aligned}$			
			1	
	Partial pressures			
	$\mathrm{CH}_{4}=0.0814 \times 300=24.4$			
	$\mathrm{H}_{2} \mathrm{O}=0.314 \times 300=94.2$		1	
	$\mathrm{CO}=0.151 \times 300=45.3$			
	$\mathrm{H}_{2}=0.453 \times 300=136$			
	$K=\frac{p_{\mathrm{CO}} \times p_{\mathrm{H}_{2}}^{3}}{p_{\mathrm{CH}} \times \mathrm{H}^{2}}$			
	$K_{p}=\frac{P_{\mathrm{CH}_{4}} \times p_{\mathrm{H}_{2} \mathrm{O}}}{}$		1	
	45.3×136^{3}			
	$=\frac{1}{24.4 \times 94.2}$		1	
	kPa^{2}		1	

Skills box answers:
a) Units of $k=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
b) Units of $K_{c}=\mathrm{mol} \mathrm{dm}^{-3}$
c) Units of $K_{\mathrm{p}}=\mathrm{Pa}$
d) Units of $k=\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
e) Units of $K_{\mathrm{c}}=\mathrm{mol}^{3} \mathrm{dm}^{-9}$
f) Units of $K_{\mathrm{p}}=\mathrm{Pa}^{3}$

