

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	The energy/enthalpy change when 1 mole gaseous atoms Gain 1 mole of electrons Under standard conditions		1 1 1	5.2.1 AO1
1(b)	Born-Haber cycle. $2 \operatorname{nd} E_{\mathrm{a}} \mathrm{O} = 602 + 148 + 738 + 1450 + 249 - 141 - 3890$ $= +844 \mathrm{kJ} \mathrm{mol}^{-1}$	1 mark for each correct step	6 1 1	5.2.1 AO2
1(c)	Electrons are attracted to nucleus Energy needs to be put in to overcome this attraction/force/bond		1 1	5.2.1 AO3
2(a)	The enthalpy/energy change when 1 mole Of gaseous atoms Is formed under standard conditions		1 1 1	5.2.1 AO1
2(b)	$\Delta H = 164 + 549 + 1064 + (2 \times 243) - (2 \times 349) - 2150$ = -585 kJmol ⁻¹	Allow correct Born–Haber cycle	1 1	5.2.1 AO2
2(c)	Removing an electron from a positive ion More energy required to overcome attraction	Allow reference to smaller radius/ size	1 1	5.2.1 AO3
2(d)	Bond enthalpy results in 2 moles of Cl atoms being formed So double the atomisation by definition	Allow both correct definitions	1 1	5.2.1 AO3
3(a)	The enthalpy/energy change when one mole of solid ionic compound is formed From its constituent ions in the gas state. Under standard conditions		1 1 1	5.2.1 AO1

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
3(b)(i)	Li(s) + $\frac{1}{2}F_{2}(g)$ Li(g) + $\frac{1}{2}F_{2}(g)$ Li(g) + F(g) Li(g) + F(g) Li ⁺ (g) + F(g) + e ⁻	Must have state symbols Do not accept multiples	4	5.2.1 AO1
3(b)(ii)	-616 - 159 - 520 - 79 + 328 = -1046 -1046	Must have – sign for second mark	1	5.2.1 AO2 MS2.4
4(a)	The enthalpy/energy change when <u>1 mole</u> of <u>gaseous ions</u> Are completed surrounded by water To create an infinitely dilute solution	Allow reference to ions "no longer interacting/influencing each other" or WTTE	1 1 1	5.2.1 AO1
4(b)	Copper and sulphate don't exist in the gas state / impossible to measure Temperature change		1 1	5.2.1 AO3

Chapter 17 - answers

Question		Answers	Extra information	Mark	AO Spec reference
4(c)(i)		Polystyrene cup with lid Reaction in solution Glass beaker		2	5.2.1 AO3
4(c)(ii)		All stages are covered and the explanation of each stage is generally correct and virtually complete.	Partially complete means ¾ of stage met	6	5.2.1 AO3
	Level 3 5–6 marks	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2, stage 3 and then stage 4.			
		Coherent communication where each stageeis explained All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies			
	Level 2 3–4 marks	OR two stages are covered and the explanations are generally correct and virtually complete.			
		Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4.			

[©] Oxford University Press www.oxfordsecondary.com

Chapter 17 - answers

Question		Answers	Extra information	Mark	AO Spec reference
	Level 1 1–2 marks Level 0 0 marks	OR only one stage is covered but the explanation is generally correct and virtually complete. Answer shows some progression between two stages Level 0 0 marks Insufficient correct chemistry to gain a mark. Sulfate and water 1a: uses suitable equipment (scales balance) 1b: uses named suitable mass (between 2–8 g) of both salts 1c: evidence of weigh reweigh technique to determine mass of salt delivered 1d: Known volume of water measured using suitable equipment (measuring cylinder/			
			Stage 2: Determining both enthalpies 2a: simple calorimeter set up (polystyrene cupand lid) 2b: basic method of measuring starting temperature (with thermometer) over time (min 3 mins) then adding and recording the temperature for a time after (min 4 mins) 2c: acknowledgement that when salt is added temperature should not be recorded 2d: Graphical determination of instantaneous temperature rise by extrapolation		

 $\hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
		Stage 3: Calcualting ΔH 3a: use of $q=mc\theta$ or equivalent 3b: use of $M_{\rm r}$ to find moles and hence ΔH_1 and ΔH_2 3c: Use of hess cycle or $\Delta H_1 - \Delta H_2$		
4(d)	$(-2099) + (-1080) - (-67) = -3112 \text{ kJ mol}^{-1}$	Allow correct cycle or diagram +3112 scores 1 mark	2	5.2.1 AO2 MS2.4
5(a)	The measure of disorder of a system	Reject 'chaos'	1	5.2.2 AO1
5(b)(i)	Enthalpy change = $\Sigma \Delta_f H$ products – $\Sigma \Delta_f H$ reactants = $(-709 + -394 + -286) - (-483 + -951) = 45 \text{ kJmol}^{-1}$ Entropy change = ΣS products – ΣS reactants = $(175 + 214 + 70) - (158 + 102) = 199 \text{ J mol}^{-1}$ $\Delta G = \Delta H - T\Delta S \text{ OR } 0 = 45000 - 199T$ T > 45000/199 = 226 K	 2 marks for ΔH 2 marks for ΔS 2 marks for use of Gibbs equation Allow correct cycle Answer of 225°C scores only 5 	1 1 1 1	5.2.2 AO2 MS2.2,2.3,2.4
5(b)(ii)	Temperature way below freezing. Ethanoic acid will be solid / energy lower than activation energy	Ignore references to water being ice unless specifically referenced in terms of solution	1	5.2.2 AO3

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
6(a)	$2K^{+}(g) + O^{2-}(g)$ $2K^{+}(g) + 2e^{-} + O(g)$ $\Delta_{EA1}H(O) = +844$ $\Delta_{EA1}H(O) = -142$ $2K(g) + O(g)$ $\Delta_{At}H(O) = +248$ $2K(g) + O(g)$ $\Delta_{LE}H(K_{2}O)$ $2K(g) + \frac{1}{2}O_{2}(g)$ $\Delta_{At}H(K_{2}O) = -362$ $\Delta_{LF}H = -362 + (2x - 90) + (2x - 418) + -248 - (-142) + -844$ $= -2328 \text{ kJ mol}^{-1}$	1 mark is for overall shape 2 mark is for correct equations 3 mark is for doubling <i>K</i> equations 23588 scores all 6 marks only if accompanied by a correct cycle. Without cycle max score is 3 Do not penalise scale of lines on Born-Haber cycle An answer of 1850 with cycle scores 3 marks	6	5.2.1 MS2.4 AO2
6(b)(i)	Oxygen is a gas so more disordered / gas more disordered than solid		1	5.2.2 AO3

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
6(b)(ii)	$\Delta G = \Delta H - T \Delta S$		1	5.2.2
	$AS = 04 / 2 \times 67 / (205/2) = 142.5 \text{ Impl}^{-1}$		1	AO2 MS2.1,2.2,2.3,2.4
	$\Delta S = 94 - (2 \times 67) - (205/2) = -142.5 \text{ J mol}^{-1}$ T = 573		1	,_,_,_,,_,
	$\Delta G = -362 - (573 \times -0.1425) \text{ OR } -362 \times 10^3 - 573 \times -142.5$		1	
	= $-280 \text{ kJ mol}^{-1} \text{ OR } -280 \times 10^3 \text{ J mol}^{-1}$		1	
	Reaction is feasible/spontaneous as ΔG is less than 0		1	
7(a)	Correct axis (T is x -axis Gibbs is y -axis) labelled		1	5.2.2
	Suitable scale (plotted points should take up over half the paper)		1	MS3.3
	Points plotted accurately	Allow 1 point plotted outside 1 mm	1	
	Read off temperature from line Temperature = 1112 K	Allow 1110–1120 K	1 1	
7(b)	PV = nRT		1	2.1.3 AO2
	n = PV/RT		1	MS2.2,2.3,2.4
	$n = \frac{100000 \times 0.5}{8.31 \times 298} = 20.2 \text{ moles}$		1	
	mass = $100.1 \times 20.2 = 2021 \mathrm{g}$	Accept 2.022 kg	1	
7(c)	$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$		1	2.1.2 AO1
7(d)	$M_{\rm r} {\rm Ca(OH)}_2 = 40.1 + (2 \times 17) = 74.1$		1	2.1.3 AO1
	2.28/74.1 = 0.308 moles		1	MS0.2
	Moles $H_2SO_4 = 0.308$ as 1:1		1	
	Concentration = 0.0308/0.5 = 0.0616		1	

[©] Oxford University Press <u>www.oxfordsecondary.com</u>

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
7(e)	pH = $-\log(0.0616 \times 2) = 0.91$	Must be 2 dp.	1	5.1.3 MS0.4,2.5 AO2
8(a)	Because it is an element		1	3.2.1 AO1
8(b)	$\Delta_r H = \Sigma \Delta_f H \text{ (products)} - \Sigma \Delta_f H \text{ (reactants)}$ $\Delta H = -111 - (-75 - 242)$ $(+) 206 \text{ (kJ mol}^{-1})$ $\Delta S = \Sigma S \text{ (products)} - \Sigma S \text{ (reactants)}$ $\Delta S = 3 \times 131 + 198 - (186 + 189)$ $(+) 216 \text{ J K}^{-1} \text{ mol}^{-1}$ $(\Delta G = \Delta H - T\Delta S)$ $= 206 - (973 \times 0.216) \text{ OR } 206 \times 10^3 - (973 \times 216)$ $-4.168 \text{ kJ mol}^{-1} \text{ OR } -4168 \text{ J mol}^{-1}$ Reaction is feasible as $\Delta G \leq 0$	 2 marks for ΔH 2 marks for ΔS 2 marks for Gibbs equation including unit conversions 1 mark for valid comment 	2 2 2 1	5.2.2 AO2 MS3.3

Chapter 17 - answers

Question	Answers	Extra information	Mark	AO Spec reference
8(d)	Moles steam = 2.70		1	5.1.2
	Moles CO = 1.30		1	AO2
	$Moles H_2 = 3.90$		1	MS1.1,2.2,2.3
	Mole fractions			
	$CH_4 = 0.7 / 8.6 = 0.0814$		1	
	$H_2O = 2.7 / 8.6 = 0.314$			
	CO = 1.3 / 8.6 = 0.151			
	$H_2 = 3.9 / 8.6 = 0.453$			
	Partial pressures			
	$CH_4 = 0.0814 \times 300 = 24.4$			
	$H_2O = 0.314 \times 300 = 94.2$		1	
	$\overline{\text{CO}} = 0.151 \times 300 = 45.3$			
	$H_2 = 0.453 \times 300 = 136$			
	$K_{p} = \frac{p_{CO} \times p_{H_{2}}^{3}}{p_{CH_{4}} \times p_{H_{2}O}}$		1	
	-45.3×136^{3}		1	
	$^{-}$ 24.4 \times 94.2		1	
	kPa ²		1	

Skills box answers:

- **a)** Units of $k = dm^3 mol^{-1} s^{-1}$
- **b)** Units of $K_c = \text{mol dm}^{-3}$
- **c)** Units of $K_p = Pa$ **d)** Units of $k = dm^6 mol^{-2} s^{-1}$
- e) Units of $K_c = \text{mol}^3 \text{ dm}^{-9}$
- **f)** Units of $K_p = Pa^3$

[©] Oxford University Press www.oxfordsecondary.com