

Question		rs	Extra information	Mark	AO Spec reference		
1(a)	Aldehyde				The unit cm ⁻¹ is not essential	1	AO1
	There is a peak at 1750 cm ⁻¹ for C=O and no broad peak between 2500 and 3300 cm ⁻¹ for OH				Allow: no peak at 3200-3600 cm ⁻¹	1	4.2.4c
	Carboxylic acid	a 1 1.1				1	
	It has the $C = O$ peak at 175 for OH of carboxylic acid	e is a broad peal		1			
	Alcohol					1	
	There is a peak at 3200-3600	cm⁻¹ and there	is no peak at 17	′50 cm ⁻¹		1	
1(b)	Reflux				Not distil	1	AO1
	Excess acidified dichromate					1	4.2.1c
1(c)	(c) The peak between 3200 and 3600 cm ⁻¹ reduces/disappears and a (sharp) peak at			and a (sharp) peak at		1	AO2
	1630-1820 cm ⁻¹ appears				1	4.2.4c	
	As the alcohol is converted if	ito an aldenyde Setween 2500-3	9 300	Allow as CH_2OH changes to CHO	1		
	As the aldehyde is converted to a carboxylic acid				Allow as CHO changes to COOH	1	
2(a)		Carbon	Hydrogen	Oxygen	The layout of the solution is not	1	A01
	Number of moles	62.1/12	10.3/1	27.6/16	essential	Ţ	2.1.50
	Relative number of atoms	5.18/1.72 = 3	10.3/1.72 = 6	1.73/1.72 = 1			
The empirical formula = C_3H_6O						1	
2(b)	-COOH / carboxyl				If they just give the formula or		AO2
	There is a sharp peak at 1630-1820 cm ⁻¹ for C=O				name it then just 1 mark	1	4.2.4c
	and a broad peak at 2500-33	uu cm ⁻ tor OH	in COOH grou		1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
2(c)	The molecular mass = 116 because the molecular ion peak is at 116 The empirical formula (C_3H_6O) mass = 36 + 6 + 16 = 58. Therefore: Molecular formula = 2 × Empirical formula	Accept M⁺ peak	1	AO2 4.2.4f 4.2.4g
	Molecular formula = $C_6H_{12}O_2$		1	
2(d)(i)	The mass of carbocation =57 i.e. $C_4H_9^+$ Therefore, carbocation is CH_3 H_3C CH_3 CH_3		1	AO3 4.2.4g
	For fragment where $m/z = 59$: the compound is a carboxylic acid and contains the COOH group which has mass of 45. Therefore the remainder of the carbocation has mass of 14 i.e. CH_2 Carbocation is $^+CH_2COOH$	Accept $(CH_3)_3C^+$ owtte	1 1 1	4.2.4h
2(d)(ii)	A is (CH ₃) ₃ CCH ₂ COOH		1	AO3 4.2.4h
3(a)(i)	Butanoic acid H H H H O H O H H H O H O H H - C - C - C - C - C - C - C - H Ethyl ethanoate	Bond angles are not important in these	1	AO1 6.1.3c
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers				Extra information	Mark	AO Spec reference
3(a)(ii)	They both have a peak at 1750cm ⁻¹ because of the C $=$ O group					1	AO2
	The butanoic acid has a broa OH group. Ethyl ethanoate h	ad peak between as no such peak	2500 and 3300 cm ⁻ (has no -OH group	⁻¹ because of its).		1	4.2.4c
3(b)	Reflux ethanol with excess a	cidified (potassiu	ım) dichromate sol	ution	As long as they don't say all of the	1	AO2
	to give ethanoic acid.				ethanol	1	4.2.1c
	$CH_3CH_2OH + 2[O] \rightarrow CH_3CH_2OH + 2[O]$	$I_3 COOH + H_2O$				1	6.1.3c
	Reflux the ethanoic acid wit	n etnanol Atalvet			reflux		
	$CH_{2}CH_{2}OH + CH_{2}COOH$	$= CH_2COOCH$	$H_2CH_2 + H_2O$		Alternatively either HCl or H_2SO_4	1	
			120113 1 1120		will do		
					The reversible arrows are not		
					essential.		
4(a)		Carbon	Hydrogen	Oxygen		1	AO1 2.1.3b
	No. of moles	68.2/12	13.63/1	18.2/16		_	4.2.4f
	Relative number of atoms	5.68/1.14 = 5	13.63/1.14 = 12	1.14/1.14 = 1			
	Empirical formula = $C_5H_{12}O$ Molecular mass/empirical formula mass = 88/88 = 1					1	
	Molecular formula = empirical formula = $C_5H_{12}O$					1	
4(b)(i)	The functional group is an alcohol because of the broad absorption between 3200 and 3600 cm ⁻¹			'Alcohol' is enough for the mark. Allow OH/hydroxyl NOT hydroxide	1	AO1 4.2.4d; 4.2.4h	

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
4(b)(ii)	OH pentan-1-ol pentan-2-ol pentan-3-ol	Name and formula required. Do not accept any branched compounds	3	AO2 4.1.1b 4.1.1e
4(c)(i)	E-pent-2-ene Z-pent-2-ene	The isomers can be other way round each time	1	AO3 4.1.3c 4.1.1b and e
4(c)(ii)	Pentan-3-ol Pentan-1-ol will give just 1 product pent-1-ene Pentan-2-ol will give 3 products: pent-1-ene and the 2 <i>E/Z</i> isomers of pent-2-ene		1 1 1	AO3 4.2.1d 4.1.3c
4(d)	H ₃ C CH ⁺ I OH	Variations are allowed but must have a 1+ charge e.g. H ₃ CCH ₂ -CH [±] -OH	1	AO3 4.2.4g
5(a)	COOH/carboxylic acid/carboxyl Has broad peak for -OH (2500-3300 cm ⁻¹) and C=O (1700 cm ⁻¹)	Not carboxylate	1 1	AO1 4.2.4c

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
5(b)	In C – bromo group – pale cream ppt etc. with silver nitrate D is a primary alcohol because it gave a carboxylic acid when fully oxidised C, D (and E) contain	Reasons also required for each mark.	1 1	AO2 4.1.3c; 4.1.3f; 4.2.1a; 4.2.2a
	C = C bond because they decolourised bromine water,		1	
5(c)	HO CH_2 CH_2 CH_2 CH_2 D Br CH_2 CH_2 CH_2 CH_2 C CH_2 CH_2 $CH_$	Allow variations on these e.g. $HOCH_2CH_2CH=CH_2$ D $BrCH_2CH_2CH=CH_2$ C $HOOCCH_2CH=CH_2$ E	1	AO3 4.1.3c; 4.1.3f; 4.2.1a; 4.2.2a
	C is unbranched and does not have E/Z isomers.		1	
5(d)	$H_2C = CHCH_2CH_2Br + Br_2 \rightarrow CH_2BrCHBrCH_2CH_2Br$		1	AO2 4.2.2a; 4.2.1c
6(a)	C ₆ H ₁₂		1	AO2 2.1.3b
	some evidence of dividing by 12 to determine number of carbons but aware that there must be some hydrogens		1	

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
6(b)(i)	G is an aldehyde Because it can be oxidised to a carboxylic acid The infrared spectra show that the product of oxidation is a carboxylic acid (peaks		1 1	AO3 4.2.4c; 6.1.2a
	at 2500-3300 and 1750 cm ⁻¹) It is ethanal Because its molecular ion peak is at m/z = 44 (mass of C ₂ H ₄ O)		1 1	
6(b)(ii)	H is a ketone Its infrared spectrum does not change after refluxing with acidified dichromate. It is butan-2-one This fits with $M_{\rm r}$ of 72 (C ₄ H ₈ O)	Ketones cannot be oxidised further using acidified dichromate	1 1 1 1	AO3 4.2.4c; 6.1.2a
6(c)	$CH_3CH=C(CH_3)CH_2CH_3$		1	AO3 4.1.3c

۲

Skills box answers:

a) 6×10⁹

b) 8×10¹¹

c) 6.025×10⁹

d) 1.62×10⁵

e) 2.18×10⁷¹

۲

© Oxford University Press www.oxfordsecondary.com