A Level OCR Chemistry

Chapter 13-answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	$\text { Atom economy }=\frac{82}{100} \times 100 \%=82 \%$	If give 82% without showing working then award $\mathbf{1}$ mark	1	$\begin{gathered} \text { AO1 } \\ \text { 2.1.3h } \end{gathered}$
1(b)(i)	Is a catalyst	No need to enlarge upon this	1	$\begin{gathered} \text { AO1 } \\ 4.2 .1 \mathrm{~d} \end{gathered}$
1(b)(ii)	With gentle heating only reach boiling point of cyclohexene	Alternative: If raise temperature too high then cyclohexanol would boil over	1	$\begin{gathered} \text { AO2 } \\ 4.2 .3 \mathrm{a}) \mathrm{ii}) \end{gathered}$
1(b)(iii)	Drying agent	To remove water	1	$\begin{gathered} \text { AO1 } \\ 4.2 .3 \mathrm{a}) \text { ii) } \end{gathered}$
1(b)(iv)	The boiling point of cyclohexene is $83^{\circ} \mathrm{C}$ which is in the middle of this range	Allow it covers the boiling point of cyclohexene $83^{\circ} \mathrm{C}$ is in the middle of the range.	1	$\begin{gathered} \mathrm{AO3} \\ \text { 2.1.3h; 1.2.2d } \end{gathered}$
1(c)	Mass of cyclohexene $=$ volume \times density $=9.50 \times 0.779 \mathrm{~g}=7.40 \mathrm{~g}$ Number of moles of cyclohexanol $=20.0 / 100=0.200 \mathrm{~mol}$ Number of moles of cyclohexene $=7.40 / 82=0.0902 \mathrm{~mol}$ Percentage yield $=\frac{0.0902}{0.200} \times 100 \%=45.1 \%$	If they show their working then any indication that the mass of the cyclohexene is 740 g is $\mathbf{1}$ mark	1 1 1 1	$\begin{gathered} \mathrm{AO3} \\ \mathrm{MO} .2 \\ \text { 2.1.3h } \\ \text { 2.1.3a and b } \end{gathered}$
2(a)	Place condenser vertically above and into the reaction vessel Water is passed through condenser	Placed above is not sufficient	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.2.3a } \\ \text { PAG5 } \end{gathered}$
2(b)(i)	Number of moles of $\mathrm{NaOH}_{\text {start }}=50.0 \times 10^{-3} \times 0.2=0.0100 \mathrm{~mol}$	Working not necessary.	1	$\begin{aligned} & \text { AO2 } \\ & \text { M2.2 } \end{aligned}$
2(b)(ii)	$\begin{aligned} & \text { Number of moles of } \mathrm{NaOH}_{\text {react }}=n(\mathrm{NaOH} \text { at start })-n(\mathrm{NaOH} \text { remaining }) \\ & =0.0100-(0.015 \times 0.40)=0.00400 \mathrm{~mol}\left(4 \times 10^{-3}\right) \end{aligned}$	If give 0.0400 mol only then $\mathbf{2}$ marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 3 \\ \text { 2.1.3a; 2.1.3g } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 13-answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b) (iii)	No. of moles of $\mathrm{RBr}=\mathrm{No}$. of moles of $\mathrm{NaOH}_{\text {react }}=0.00400\left(4 \times 10^{-3}\right)$ $M_{\mathrm{r}}=\frac{m}{n}=0.548 / 0.00400=137 \mathrm{~g} \mathrm{~mol}^{-1}$		1	$\begin{gathered} \mathrm{AO2} \\ \text { 2.1.3a; 2.1.3g } \end{gathered}$
2(b)(iv)	The bromine accounts for 79.9 of the 137; remainder $=57.1$ (57) Divide by 12 (for carbon) $=4$ remainder 9 i.e. $\mathrm{C}_{4} \mathrm{H}_{9}$ The alcohol is a tertiary alcohol because it is not oxidised by acidified dichromate Therefore, alcohol is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ or methylpropan- 2-ol Therefore, bromoalkane is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ or 2-bromomethylpropane	Owtte	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AOB} \\ \text { 2.1.3b } \\ \text { 4.2.1c } \end{gathered}$
2(c)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{NaOH}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{NaBr}(\mathrm{aq})$	Allow skeletal or partially skeletal formulae as above.	1	$\begin{gathered} \mathrm{AO1} \\ 4.2 .2 \mathrm{a} \end{gathered}$
3(a)(i)	2-hydroxypropanoic acid		1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1a } \end{gathered}$
3(a)(ii)	Carboxylic acid / carboxyl Secondary alcohol / hydroxyl	Do not accept-COOH Accept 2° alcohol Do not accept alcohol or hydroxyl group	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { AO1 } \\ & \text { 4.1.1c } \end{aligned}$
3(a)(iii)	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	Accept $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ Do not accept $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{COOH}$ Do not accept $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1e;4.2.3b)i) } \end{gathered}$
3(a)(iv)	Optical isomerism	It contains a chiral centre / it contains a carbon with four different groups	1	4.1.3c-d

A Level OCR Chemistry

Chapter 13-answers

Question	Answers	Extra information	Mark	AO Spec reference
3(b)(i)		1 mark for each correct formula. D the carboxylic acid group could react with sodium hydroxide	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.2.3b-c; 4.2.1d; } \\ \text { 4.1.3f(ii); 4.2.2a } \end{gathered}$
3(b)(ii)	B is converted to C: dehydration / elimination C is converted to D: Nucleophilic substitution		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \text { 4.1.3(f-h);4.2.2a } \end{gathered}$
4(a)	Add bromine water and shake Colour changes from orange to colourless	Accept decolourised	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO1 4.1.3f; PAG7
4(b)	2-bromo-2-methylpropane	Dashes can be left out could have other halogens	1	$\begin{gathered} \text { AO3 } \\ 4.2 .3 \mathrm{C} \end{gathered}$
4(c)(i)	HBr or HCl in cold (room temperature)	HI is acceptable but practically difficult	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.1 .3 f \end{aligned}$
4(c)(ii)	Reflux with aqueous sodium hydroxide solution	Accept aqueous KOH	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.2 .2 \mathrm{a} \end{gathered}$
4(d)(i)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$	HCl is alternative Accept skeletal or displayed formulae; e.g.	1	$\begin{aligned} & \text { AO2 } \\ & 4.1 .3 f \end{aligned}$
4(d)(ii)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{NaOH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{NaBr}$	KOH is alternative Accept skeletal or displayed formulae	1	$\begin{gathered} \text { AO2 } \\ 4.2 .2 \mathrm{a} \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 13-answers

Question	Answers	Extra information	Mark	AO Spec reference
5(a)(i)	Primary alcohol / hydroxyl Ketone / carbonyl aldehyde	Accept 1° alcohol; do not accept alcohol	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1c } \end{gathered}$
5(a)(ii)	$\mathrm{HOCH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1b } \end{gathered}$
5(b)(i)		No alternatives	1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.1c; } 6.1 .2 \mathrm{a} \end{gathered}$
5(b)(ii)	Orange to green		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2c; 6.3.1c } \end{gathered}$
5(b)(iii)	$\mathrm{HOCH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}+3[\mathrm{O}] \rightarrow \mathrm{HOOCCOCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$	1 mark for reactants 1 mark for products	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.1 .2 \mathrm{C} \end{gathered}$
6(a)	Reaction 1 There is only 1 product	Both required for $\mathbf{1}$ mark	1	$\begin{gathered} \text { AO1 } \\ \text { 2.1.3h } \end{gathered}$
6(b)	2-chlorobutane is the major product formed because it forms the more stable intermediate carbocation 1-chlorobutane is a minor product but is still formed	Allow: Markovnikoff addition means that 2-chlorobutane is the major product	1 1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.3h } \end{gathered}$
6(c)	This is a free-radical reaction which is a chain reaction Several products can be formed		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.1 .2 \mathrm{~g} \end{gathered}$

A Level OCR Chemistry

Chapter 13-answers

Question	Answers	Extra information	Mark	AO Spec reference
6(d)		The formulae can be displayed or structural $\text { e. } \mathrm{g} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$	5	

Skills box answers:
a) (i) To ensure the sodium carbonate (solution) is mixed thoroughly.
(ii) To release the pressure from the build-up of CO_{2} / to release CO_{2}.
b) (i) To remove any excess calcium chloride.
(ii) To remove water (when it is clear there are no droplets of water in the solution).

