

Chapter 13 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	$Atom economy = \frac{82}{100} \times 100\% = 82\%$	If give 82% without showing working then award 1 mark	1	AO1 2.1.3h
1(b)(i)	Is a catalyst	No need to enlarge upon this	1	AO1 4.2.1d
1(b)(ii)	With gentle heating only reach boiling point of cyclohexene	Alternative: If raise temperature too high then cyclohexanol would boil over	1	AO2 4.2.3a)ii)
1(b)(iii)	Drying agent	To remove water	1	AO1 4.2.3a) ii)
1(b)(iv)	The boiling point of cyclohexene is 83 °C which is in the middle of this range	Allow it covers the boiling point of cyclohexene 83°C is in the middle of the range.	1	AO3 2.1.3h; 1.2.2d
1(c)	Mass of cyclohexene = volume \times density = 9.50 \times 0.779g = 7.40g Number of moles of cyclohexanol = 20.0/100 = 0.200 mol Number of moles of cyclohexene = 7.40/82 = 0.0902 mol Percentage yield = $\frac{0.0902}{0.200} \times 100\% = 45.1\%$	If they show their working then any indication that the mass of the cyclohexene is 740 g is 1 mark	1 1 1	AO3 MO.2 2.1.3h 2.1.3a and b
2(a)	Place condenser vertically above and into the reaction vessel Water is passed through condenser	Placed above is not sufficient	1 1	AO1 4.2.3a PAG5
2(b)(i)	Number of moles of NaOH _{start} = $50.0 \times 10^{-3} \times 0.2 = 0.0100$ mol	Working not necessary.	1	AO2 M2.2
2(b)(ii)	Number of moles of NaOH _{react} = $n(NaOH \text{ at start}) - n(NaOH \text{ remaining})$ = $0.0100 - (0.015 \times 0.40) = 0.00400 \text{ mol } (4 \times 10^{-3})$	If give 0.0400 mol only then 2 marks	1 1	AO3 2.1.3a; 2.1.3g

© Oxford University Press www.oxfordsecondary.com

Chapter 13 – answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(iii)	No. of moles of RBr = No. of moles of NaOH _{react} = 0.00400 (4×10^{-3})		1	AO2
	$M_{\rm r} = \frac{m}{n} = 0.548/0.00400 = 137 \mathrm{g mol^{-1}}$		1	2.1.3a; 2.1.3g
2(b)(iv)	The bromine accounts for 79.9 of the 137; remainder = 57.1 (57) Divide by 12 (for carbon) = 4 remainder 9 i.e. C_4H_9 The alcohol is a tertiary alcohol because it is not oxidised by acidified dichromate	Owtte Allow	1 1 1	AO3 2.1.3b 4.2.1c
	Therefore, alcohol is $(CH_3)_3COH$ or methylpropan- 2-ol Therefore, bromoalkane is $(CH_3)_3CBr$ or 2-bromomethylpropane	H ₃ C CH ₃ OR Br	1	
2(c)	$(CH_3)_3CBr + NaOH(aq) \rightarrow (CH_3)_3COH + NaBr(aq)$	Allow skeletal or partially skeletal formulae as above.	1	AO1 4.2.2a
3(a)(i)	2-hydroxypropanoic acid		1	AO2 4.1.1a
3(a)(ii)	Carboxylic acid / carboxyl Secondary alcohol / hydroxyl	Do not accept -COOH Accept 2° alcohol Do not accept alcohol or hydroxyl group	1 1	AO1 4.1.1c
3(a)(iii)	HOCH ₂ CH ₂ COOH	Accept HO(CH ₂) ₂ COOH Do not accept HOC ₂ H ₄ COOH Do not accept OHCH ₂ CH ₂ COOH	1	AO2 4.1.1e;4.2.3b)i)
3(a)(iv)	Optical isomerism	It contains a chiral centre / it contains a carbon with four different groups	1 1	4.1.3c-d

© Oxford University Press www.oxfordsecondary.com

Chapter 13 - answers

Question	Answers	Extra information	Mark	AO Spec reference
3(b)(i)	О В О ОН О ОН ОН ОН В С D	mark for each correct formula. D the carboxylic acid group could react with sodium hydroxide	1 1 1	AO3 4.2.3b-c; 4.2.1d; 4.1.3f(ii); 4.2.2a
3(b)(ii)	B is converted to C: dehydration / elimination C is converted to D: Nucleophilic substitution		1 1	AO1 4.1.3(f-h);4.2.2a
4(a)	Add bromine water and shake Colour changes from orange to colourless	Accept decolourised	1 1	AO1 4.1.3f; PAG7
4(b)	2-bromo-2-methylpropane	Dashes can be left out could have other halogens	1	AO3 4.2.3c
4(c)(i)	HBr or HCl in cold (room temperature)	HI is acceptable but practically difficult	1 1	AO3 4.1.3f
4(c)(ii)	Reflux with aqueous sodium hydroxide solution	Accept aqueous KOH	1 1	AO3 4.2.2a
4(d)(i)	$(CH_3)_2C=CH_2 + HBr \rightarrow (CH_3)_3CBr$	HCl is alternative Accept skeletal or displayed formulae; e.g. + HBr Br	1	AO2 4.1.3f
4(d)(ii)	$(CH_3)_3CBr + NaOH \rightarrow (CH_3)_3CBr + NaBr$	KOH is alternative Accept skeletal or displayed formulae	1	AO2 4.2.2a

[©] Oxford University Press www.oxfordsecondary.com

Chapter 13 - answers

Question	Answers	Extra information	Mark	AO Spec reference
5(a)(i)	Primary alcohol / hydroxyl Ketone / carbonyl aldehyde	Accept 1º alcohol; do not accept alcohol	1 1 1	AO2 4.1.1c
5(a)(ii)	HOCH ₂ COCH ₂ CH ₂ CHO C ₅ H ₈ O ₃		1 1	AO1 4.1.1b
5(b)(i)	НО О О О О	No alternatives	1	AO2 4.2.1c; 6.1.2a
5(b)(ii)	Orange to green		1	AO1 4.1.2c; 6.3.1c
5(b)(iii)	HOCH ₂ COCH ₂ CH ₂ CHO +3[O] → HOOCCOCH ₂ CH ₂ COOH + H ₂ O	1 mark for reactants 1 mark for products	1 1	AO3 4.1.2c
6(a)	Reaction 1 There is only 1 product	Both required for 1 mark	1	AO1 2.1.3h
6(b)	2-chlorobutane is the major product formed because it forms the more stable intermediate carbocation 1-chlorobutane is a minor product but is still formed	Allow: Markovnikoff addition means that 2-chlorobutane is the major product	1	AO2 4.1.3h
6(c)	This is a free-radical reaction which is a chain reaction Several products can be formed		1 1	AO2 4.1.2g

© Oxford University Press www.oxfordsecondary.com

Chapter 13 - answers

Question	Answers	Extra information	Mark	AO Spec reference
6(d)	Cl reflux (1) with OH reflux or distil (1) with acidified dichromate (1)	The formulae can be displayed or structural e.g CH ₃ CH(OH)CH ₂ CH ₃	5	

Skills box answers:

- a) (i) To ensure the sodium carbonate (solution) is mixed thoroughly.
 - (ii) To release the pressure from the build-up of CO_2 / to release CO_2 .
- **b) (i)** To remove any excess calcium chloride.
 - (ii) To remove water (when it is clear there are no droplets of water in the solution).

