A Level OCR Chemistry

Chapter 10 - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	A compound made up of hydrogen and carbon only.		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1a } \end{gathered}$
1(b)	Because it is an alkane it has the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$. Its molecular formula is $\mathrm{C}_{5} \mathrm{H}_{12}$. Relative molecular mass $=5 \times 12+12 \times 1=72$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 2.1.1e } \end{gathered}$
1(c)	Isomers have the same molecular formula but different structural formulae.		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1e } \end{gathered}$
1(d)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ pentane $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ 2-methylbutane $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$ or $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$ 2,2-dimethylpropane	Both formula and name required for each mark.	1 1 1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1a } \end{gathered}$
1(e)	$0.36 \mathrm{~g}=0.36 / 72 \mathrm{~mol}=5 \times 10^{-3} \mathrm{~mol}$ Number of molecules $=5 \times 10^{-3} \times 6.022 \times 10^{23}=3.01 \times 10^{21}$ In each molecule there are 17 atoms. Total number of atoms $=3.01 \times 10^{21} \times 17=5.12 \times 10^{22}$	Just the answer with no reasoning shown is $\mathbf{1}$ mark	1 1 1	$\begin{gathered} \text { AO2 } \\ \text { 2.3.1a } \\ \text { 2.3.1a } \\ \text { AO3 } \\ \text { 2.3.1a } \end{gathered}$
2(a)	I pent-1-ene II 2-methylbut-2-ene III pent-2-ene	Do not allow pentene	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1a } \end{gathered}$
2(b)(i)	Stereoisomers have the same structural formula Have different arrangement of bonds in space		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.1 .3 \mathrm{C} \end{gathered}$

A Level OCR Chemistry

Chapter 10 - answers

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(ii)	Isomer III		1 1	$\begin{gathered} \text { AO2 } \\ 4.1 .3 \mathrm{C} \end{gathered}$
2(b)(iii)	There is no free rotation about the $\mathrm{C}=\mathrm{C}$ double bond. On each carbon of the $\mathrm{C}=\mathrm{C}$ bond there are 2 different atoms or groups		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.1 .3 \mathrm{C} \end{gathered}$
2(c)	Methylcyclobutane		1	$\begin{gathered} \mathrm{AO} 2 \\ 4.1 .1 \mathrm{c}(\mathrm{v}) \end{gathered}$
3(a)	Use the ideal gas equation $\begin{aligned} & n=\frac{p V}{R T} \\ & n=\frac{1.01 \times 10^{5} \times 85 \times 10^{-6}}{8.31 \times 450} \\ & =2.30 \times 10^{-3} \mathrm{~mol} \\ & M_{\mathrm{r}}=\mathrm{m} / \mathrm{n}=0.20 / 2.30 \times 10^{-3}=87(.1) \mathrm{g} \mathrm{~mol}^{-1} \end{aligned}$	Some evidence of using the equation is required	1 1 1 1	$\begin{gathered} \mathrm{AO2} \\ 4.2 .4 \mathrm{f} \\ 2.1 .3 \mathrm{f} \end{gathered}$
3(b)	The last /highest value significant peak		1	$\begin{aligned} & \text { AO1 } \\ & \text { 4.2.4f } \end{aligned}$
3(c)	$\begin{aligned} & \text { Error }=100 \% \times\|88-87\| / 88 \\ & 1.14 \% \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 1.1.4d } \end{gathered}$

A Level OCR Chemistry

Chapter 10 - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
3(d)(i)	2 marks for $1^{\text {st }}$ (left-hand) diagram 1 mark for $2^{\text {nd }}$ diagram	Give both marks if as shown Lose 1 mark if give CH_{3} on CH but does not show all hydrogens All bonds must be shown	2 1	$\begin{gathered} \text { AO3 } \\ \text { 4.1.1b } \end{gathered}$
3(d)ii)	$\begin{aligned} & a=109.5 \\ & b=104.5^{\circ} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1b } \end{gathered}$
4(a)	Chlorine is more electronegative than carbon electrons are not shared equally / the electrons are attracted more by the chlorine atom electron cloud distorted towards chlorine		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 2.2.2j } \end{gathered}$
4(b)(i)	The molecule is tetrahedral and symmetrical The electrons (electron clouds) are symmetrically distributed so the polar bonds cancelout OR not asymmetrically distributed		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 2.2.2j } \end{gathered}$

A Level OCR Chemistry

Chapter 10 - answers

\square

Question	Answers	Extra information	Mark	AO Spec reference
4(b)(ii)	1 mark for atoms and bonds 1 for dipole $\delta-$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 2.2.2j } \end{gathered}$
4(c)	intermolecular bond is formed Diagram shows the orientation of the molecules as shown below with dipoledipole forces shown in-between molecules $\delta-$ мимим δ		1 1 1	AO3 2.2.2k
5(a)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1b } \end{gathered}$
5(b)	Butan-1-ol has an OH group which can hydrogen bond to other - OH groups on the butan-1-ol molecules. Pentane has (weak) instantaneous dipole-instantaneous dipole forces between the molecules which are transient (temporary). (Butan-1-ol also has these forces.) The hydrogen bonds are stronger than the instantaneous dipole-instantaneous dipole forces between the molecules.		1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 2.2.2l/4.2.1a } \end{gathered}$

A Level OCR Chemistry

Chapter 10 - answers

Question	Answers	Extra information	Mark	AO Spec reference
5(c)	Fill both burettes with the two liquids and rub the nylon rod with the silk rag to produce a charged rod Run each liquid slowly from the burette (into a beaker) Observe any deviation of the liquid stream The butan-1-ol will be deviated a lot because it is a polar liquid. The pentane stream will not be deviated because it is non-polar and will not be affected by the electrical field.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 1.2.1a } \end{gathered}$
6(a)	$\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$ 1, 2-dibromoethane $\mathrm{CH}_{3} \mathrm{CHBr}_{2}$ 1, 1-dibromoethane		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1e } \end{gathered}$
6(b)(i)	 1, 1-dibromoethene E-1, 2-dibromoethene Z-1, 2-dibromoethene		1 1 1	$\begin{gathered} \text { AO2 } \\ 4.1 .3 \mathrm{c} \end{gathered}$
6(b)(ii)	1, 1-dibromoethene and Z-1, 2-dibromoethene are polar The more electronegative bromine atoms are at one end or on one side of the molecule This leads to an asymmetric distribution of electrons/charge and therefore the molecule is polar		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.1 .3 \mathrm{C} \end{aligned}$
6(b)(iii)	In $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ the bond angle is 109.5° In $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$ the angle is 120°		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & \text { 2.2.2g/4.1.3b } \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Chemistry

Chapter 10 - answers

Answers:

1 (a) False.
π and 10 never changes/they are not variables so they can't be proportional to each other
(b) False. $\pi^{2}=9.8696 \ldots$ this is not the same as 10 (you could write: $\pi^{2} \neq 10$)
(c) True. $\pi^{2}=9.8696$ which is very close to 10
(d) True.
(e) False e to a negative power is less than 1. The more negative it is, the smaller it gets. $\mathrm{e}^{-100}=3.74 \times 10^{-44}$
(f) False.

For a zero order reaction, rate does not vary with concentration
(g) False.

Rate is proportional to the rate constant, $k . k=A e^{-\frac{E_{a}}{R T}}$ (Arrhenius equation). So, rate does not increase linearly with temperature even though it does increase with temperature. (Actually rate $\propto \mathrm{e}^{-\frac{1}{T}}$.
(h) False.

The enthalpy change of combustion of propane is higher than ethane because there are more bonds made for the combustion of propane. However, it is incorrect to use the \gg symbol, because $\Delta_{c} H^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is of the same order of magnitude as $\Delta_{c} H^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$. Both enthalpy changes are approximately in the $1000 \mathrm{skJ} \mathrm{mol}{ }^{-1}$
2 (a) >
$A_{\mathrm{r}}(\mathrm{Se})=34, A_{\mathrm{r}}(\mathrm{Se})=16$. It would be wrong to use the \gg symbol as they are both the same order of magnitude. Both in the tens.
(b) \gg

The mass of a diamond is likely to be comparable to the mass of plastic bag, but a polymer has millions of molecules in it. So, there would be millions more carbon atoms in diamond than polymer chains in a plastic bag. It's right to use \gg and not >, because it is many orders of magnitude higher.
(c) $\sim o r \approx$.

Chemistry A level has a even gender split - it is the most gender balanced of the science subjects (at time of writing). It would not be right to use = as it is very, very unlikely to be perfectly balanced.

