

7 Cell division, diversity and organization – answers

Question	Answers			Extra information	Mark	AO Spec reference
1(a)	Letter Phase Event		Event	One mark per row	6	AO1 2.1.6(b)
	Α	prophase	nuclear envelope disappears			2.1.6(c)
	В	anaphase	sister chromatids split and travel to opposite poles			2.1.6(d)
	С	interphase	cell size increase/organelles duplicate/DNA duplicates/protein synthesis			
	D	cytokinesis	cytoplasm splits by cleavage furrow			
	E	telophase	chromosomes uncoil			
	F	metaphase	chromosomes line up along the equator			
1(b)	$C \rightarrow A \rightarrow$	F → B → E → I		If all correct, award 3 marks Award 2 marks for any two of the following pairs: A-F , B-E , E-D Award 1 mark for any one of the pairs	3	AO1 2.1.6(b) 2.1.6(c) 2.1.6(d)
1(c)	Animal cell ✓ AND cytokinesis describes a cleavage furrow being formed, which only occurs in animal cells OR plant cells forms cell plate instead of cleavage furrow ✓			One mark for correctly identifying cell One mark for correct explanation	2	AO1 2.1.6(b) 2.1.6(c) 2.1.6(d)
2(a)(i)	Cell B ✓ AND homologous chromosomes paired up / lined up in the equator OR crossing over occurs ✓			One mark for correctly identifying cell One mark for correct explanation	2	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)

[©] Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Question	Answers	Extra information	Mark	AO Spec reference
(ii)	Cell B ✓		1	AO1 2.1.6(b) 2.1.6(f) 2.1.6(g)
2(b)	Any one for cell A: two daughter cells ✓ that are genetically identical ✓ are diploid cells ✓ AND Any one for cell B: four daughter cells ✓ that are genetically different ✓ are haploid cells / gametes ✓		2 max	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)
2(c)(i)	Spindle fibres are attached correctly to the <u>centromere</u> ✓		1	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)
(ii)	G ₁ /S checkpoint ✓ checks for correct cell size / correct number of organelles / DNA damage ✓ G ₂ /M checkpoint ✓ checks for if DNA was replicated correctly / correct cell size / energy or nutrient levels ✓		4	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)
(iii)	Cell enters G₀ phase / cell arrest ✓ eventually undergoes apoptosis ✓		2	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)

[©] Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Question		Answers	Extra information	Mark	AO Spec reference
(iv)	Cell becomes specia	alized / differentiated ✓		1	AO1 AO2 2.1.6(b) 2.1.6(f) 2.1.6(g)
3(a)	A group of similar co working together fo	ells ✓ r a similar function ✓		2	AO1 2.1.6(i) 2.1.6(j) 2.1.6(k)
3(b)(i)	of cells ✓ Pluripotent – can sp	rentiated cells that has the ability to specialise into all types ecialise into most types of cells, except extra embryonic cells vecialise into specific types of a specific tissue v		3	AO2 2.1.6(i) 2.1.6(j) 2.1.6(k)
(ii)	Pluripotent – embry	<u>early</u> embryonic stem cells ✓ onic stem cells ✓ marrow / hemopoietic stem cells ✓		3	AO2 2.1.6(i) 2.1.6(j) 2.1.6(k)
(iii)	Erythrocytes: no nucleus more space for haemoglobin to bind and transport oxygen biconcave shape larger surface area to volume ratio for faster diffusion		 1 mark for erythrocyte adaptation ✓ 1 mark for its explanation 1 mark for neutrophil adaptation ✓ 1 mark for its explanation 	4	AO2 2.1.6(i) 2.1.6(j) 2.1.6(k)

© Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Question	Answers		Extra information	Mark	AO Spec reference
	Neutrophils:				
	lobed nucleus	for squeezing through capillaries to target infection in tissues			
	contains lysosomes	contains hydrolytic enzymes to digest pathogens			
	extensive cytoskeleton	for phagocytosis			
	extensive rough endoplasmic reticulum	to make many enzymes / lysozymes			
	large Golgi apparatus	to package enzymes into vesicles or make lysosomes			
	many mitochondria	for more aerobic respiration / making of ATP for endocytosis / phagocytosis			
4	crossing over occurs in prophase 1 ✓ homologous chromosomes pair up / Bivalents are formed ✓ non-sister chromatids from different chromosomes within the pair switch over alleles at the chiasmata ✓ independent assortment of homologous chromosomes / bivalents occurs in metaphase 1 ✓ random arrangement of which side the homologous pairs face ✓ producing different possible combinations of chromosomes in resulting cells ✓ independent assortment of sister chromatids:			9	AO2 AO3 2.1.6(f) 2.1.6(g)
	occurs in metaphase 2 ✓ gives different possible combinations of alleles (due to crossing over) ✓				

© Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Question	Answers				Extra information	Mark	AO Spec reference		
5(a)	Event	Mitosis	Meiosis 1	Meiosis 2	One mark per correct row	5	AO1 2.1.6(c)		
	crossing over occurs		✓				2.1.6(g)		
	diploid cells are made	✓					Synoptic: 2.1.1(k)		
	two daughter cells are made	✓	✓				UF AE		
	chromosomes condense	✓	✓	✓					
	centromeres split	✓		✓					
(b)(i)	Cell wall ✓					1	-		
(ii)	Any two pairs from: T. aquaticus would have a circular chromosome AND human cells would have linear chromosomes ✓ T. aquaticus would have one chromosome only AND human cells have 46 ✓ T. aquaticus would have plasmids AND human cells do not ✓				4 max				
(iii)	Any one pair from: Binary fission: No breakdown / reforming nucleus (prophase / telophase) ✓ Because prokaryotic cells do not have nuclei ✓ OR No metaphase ✓ Because no centrioles / spindle fibres to line up chromosomes ✓				2 max				
6(i)	Meristem ✓				1	AO1			
(ii)	The process by which a cell developerform a specific function ✓	ops to have spe	cific structures i	n order to		1	AO2 2.1.6(l) 2.1.6(h)		

[©] Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Question	Answers	Extra information	Mark	AO Spec reference
(iii)	Any one of similarities: • Phospholipid bilayer ✓ • Contains cholesterol ✓ • Carrier and channel proteins ✓ • Glycoproteins / Glycolipids ✓ Any one of differences: • Root hair cells have larger SA:V than palisade mesophyll cells ✓ • Root hair cells have more carrier proteins ✓ Correlating explanation for difference: • For more efficient absorption of water / mineral ions ✓ • For more absorption of specific mineral ions by active transport ✓	Answer for the differences must be comparative	3 max	2.1.6(m) 2.1.5(b) 2.1.5(d) 2.1.2(n)
(b)(i)	 AND Any three of the following: Conjugated protein ✓ Contains 4 haem groups allowing it to bind to O₂ ✓ Globular shape ✓ Has hydrophilic amino acids on the outside so can interact with plasma / be soluble ✓ Four subunits (2α + 2β) ✓ 		4	
(ii)	Multipotent / Hemopoietic / stem cells ✓ found in bone marrow ✓		2	

© Oxford University Press www.oxfordsecondary.com

7 Cell division, diversity and organization – answers

Skills box answers

Question	Answer
1	75 μm
2	5μm
3	0.025 μm

