

Question	Answers			Extra information	Mark	AO Spec reference	
1(a)(i)	non-protein substance ✓ required for protein / enzyme to function ✓				2	AO1 2.1.4(e)	
1(a)(ii)	Cofactor	Enzyme with which it is associated	Is the cofactor organic or inorganic?	Is the cofactor a prosthetic group?	Award one mark per correct row	3	AO1 2.1.4(e) 5.2.2(f)
	Zn ²⁺	carbonic anhydrase	inorganic	yes			5.2.2(1)
	Cl-	amylase	inorganic	no			
	coenzyme A	pyruvate dehydrogenase	organic	no			
1(b)(i)	(end) product inhibition ✓				1	AO2 2.1.4(f)	
1(b)(ii)	<i>idea of</i> regulates production rate ✓			Accept negative feedback	1	AO2 2.1.4(f)	
2(a)	Any five from: active site (of amylase) complementary to substrate / starch ✓ substrate / starch binds to active site ✓ induced fit ✓ (forms) enzyme-substrate complex ✓ lowers activation energy ✓ (forms) enzyme-product complex ✓				5 max	AO1 2.1.4(c)	
2(b)(i)	Any two from: temperature ✓ amylase (solution) concentration / volume ✓ starch (solution) concentration / volume ✓				2 max	AO2 2.1.4(d)(i) 2.1.4(d)(ii)	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
2(b)(ii)	iodine (test) \checkmark <i>idea that</i> hydrolysis is complete when blue / black colour no longer appears \checkmark		2	AO2 2.1.4(d)(ii) 2.1.2(q)
2(b)(iii)	Any two from: <i>idea that</i> more intermediate temperatures need to be tested ✓ the number of repeats is unknown / more repeats are needed ✓ 6.5 and 7.0 and 7.5 are similar ✓		2 max	AO3 2.1.4(d)(i) 2.1.4(d)(ii)
2(b)(iv)	<i>idea of</i> change in charges in active site ✓		1	AO2 2.1.4(d)(i) 2.1.4(d)(ii)
3(a)	transfer 1% solution to distilled water ✓ 1:9 ratio of solution : water ✓ use pipette / volumetric flask ✓	e.g., 'add 1 cm ³ of the solution to 9 cm ³ of water'	3	AO2 2.1.4(d)(ii)
3(b)(i)	1.3 🗸 🗸 🗸	Q ₁₀ between 20 and 30 °C = 0.39/0.20 = 0.95 Q ₁₀ between 30 and 40 °C = 0.66/0.39 = 1.69 (mean =) 1.32 Accept errors carried forward throughout Correct answer scores full marks even without working	4	AO2 2.1.4(d)(i) 2.1.4(d)(ii)
3(b)(ii)	more kinetic energy ✓ <i>idea of</i> greater rate of enzyme–substrate complex formation ✓ <i>idea of</i> greater rate of product formation ✓	Accept alternative wording for more	3	AO2 2.1.4(d)(i) 2.1.4(d)(ii)

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
4(a)	$1.58 imes10^{-7}$ (mol dm ⁻³) 🗸 🗸	Accept one mark for 0.000000 158 (not in standard form)	2	AO2 2.1.4(d)(i)
4(b)	Any four from: $ \frac{temperature}{more kinetic energy \checkmark} $ hydrogen bonds break \checkmark $ \frac{pH}{change in charges \checkmark} $ hydrogen and ionic bonds break \checkmark $ \frac{general}{active site changes shape \checkmark} $		4 max	AO1 2.1.4(d)(i)
4(c)	competitive inhibitor binds to active site and non-competitive inhibitor binds to allosteric site ✓ non-competitive inhibitor changes tertiary structure ✓ non-competitive inhibitor lowers the maximum rate of reaction / V _{max} ✓	Allow 'site other than active site' for 'allosteric site' Accept reverse argument Accept reverse argument Do not allow reversible / irreversible because these terms can apply to either inhibitor	3	AO1 2.1.4(f)
5(a)	curved line below the original line \checkmark new line labelled as 'lower activation energy with enzyme' \checkmark	Accept alternative wording	2	AO2 2.1.4(c)
5(b)	(original model was) lock and key ✓ active site and substrate(s) have specific and complementary shapes ✓ (new model is) induced fit ✓ substrate binds and changes the shape of the active site ✓ providing a better fit ✓		4 max	AO1 2.1.4(c)

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
6	 Level 3 (5-6 marks) Outlines reactions and details for all three enzymes. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3-4 marks) Outlines reactions and details for two enzymes OR Outlines reactions for all three enzymes and details for at least one enzyme. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Outlines reaction of an enzyme and details for an enzyme. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit. 	 Indicative content: amylase Breaks down starch / amylose / amylopectin forms maltose extracellular / digestive cofactor is Cl⁻ optimum pH is 6.7–7.0 carbonic anhydrase converts water and carbon dioxide to carbonic acid / H⁺ and HCO₃⁻ in red blood cells prosthetic group is Zn²⁺ ATP synthase converts ADP and inorganic phosphate to ATP on thylakoid / mitochondrial membranes requires flow of H⁺ ions 	6	AO1 2.1.4(b) 2.1.4(e) 3.1.2(i) 5.2.2(h)

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Skills box answers

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲