

4 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	(A=) adenine ✓ (B=) ribose ✓ (C=) (inorganic) phosphates ✓	ACCEPT triphosphate	3	AO1 2.1.3c
1(b)	similarities pentose sugar ✓ (one) nitrogenous base ✓ differences ATP has three phosphates AND		Max 4	AO1 2.1.3a and c
1(c)	hydrolysis ✓		1	AO1 2.1.3b and c
1(d)	condensation (reaction) ✓ light-dependent stage of photosynthesis (in chloroplasts of plant cells) ✓ in mitochondria ✓ substrate-level phosphorylation ✓ oxidative phosphorylation / by ATP synthase ✓	ACCEPT photophosphorylation ACCEPT in glycolysis / in Krebs cycle	Max 4	AO1 2.1.3c, 5.2.1d, 5.2.2c, e, g, and h
2(a)(i)	(nitrogenous) bases ✓	ACCEPT named bases	1	AO2 2.1.3a
2(a)(ii)	idea that all (double-stranded) DNA molecules contain 50% ¹⁴N and 50% ¹⁵N ✓ template strand contains (only) ¹⁵N ✓ new strand contains (only) ¹⁴N ✓		Max 2	AO3 2.1.3e

[©] Oxford University Press www.oxfordsecondary.com

4 Nucleotides and nucleic acids - answers

Question			Answers		Extra information	Mark	AO Spec reference
2(a)(iii)	some DNA contains only ¹⁴ N ✓ which is low density ✓ idea that (when generation 1 replicated DNA) 50% of template strands were ¹⁴ N and 50% were ¹⁵ N ✓				Max 2	AO3 2.1.3e	
2(a)(iv)	50% high density ✓ 0% intermediate de	,				2	AO3 2.1.3e
2(b)(i)	(DNA) helicase , unv DNA polymerase , a		\W , DNA ✔ to new DNA strand ✔			Max 2	AO1 2.1.3e
	AVP ✓				e.g., DNA ligase catalyses the formation of phosphodiester bonds; DNA polymerase proofreads newly synthesised DNA		
2(b)(ii)	nucleotides ✓ ATP ✓					Max 1	AO2 2.1.3e
3(a)(i)	RNA contains ribose AND DNA contains deoxyribose ✓ RNA contains , U / uracil AND DNA contains , T / thymine ✓ RNA is single-stranded AND DNA is double-stranded ✓ RNA is shorter ora ✓				Max 3	AO1 2.1.3a	
3(a)(ii)	nitrogenous base	Purine or pyrimidine?	Complementary base	Number of hydrogen bonds formed with complementary base	One mark for column 2 One mark for column 3 One mark for two hydrogen bonds (column 4)	4	AO1 2.1.3a and di
	adenine	purine	T / thymine	2	One mark for three hydrogen		
	cytosine	pyrimidine	G / guanine	3	bonds (column 4)		

[©] Oxford University Press www.oxfordsecondary.com

4 Nucleotides and nucleic acids - answers

Question		An	swers		Extra information	Mark	AO Spec reference
3(b)	P = guanine AND Z = cytosine ✓ Plus any two from P , has two rings / is a purine ✓ Z , has one ring / is a pyrimidine ✓ (they are bonded by) three hydrogen bonds ✓					Max 3	AO2 2.1.3a and di
4(a)(i)	walls ✓ detergent ✓ protease ✓					3	AO1 2.1.3dii
4(a)(ii)	Step in DNA purification		Why is it added	?	One mark per correct row	3	AO1 2.1.3dii
	addition of salt	break hydrogen bonds (between DNA strands) / separate DNA polynucleotides					2.1.5011
	addition of enzymes	Break down, proteins / histones, surrounding DNA					
	addition of alcohol Precipitate DNA						
4(a)(iii)	pestle and mortar ✓				1	AO1 2.1.3dii	
5(a)	Process		DNA replication	transcription	One mark per correct row	4	AO1
	Which sections of DNA need to be unzipped?		entire length of each chromosome / AW	the gene being transcribed			2.1.3e and g
	Enzyme that catalyses the of the polynucleotide p		DNA polymerase / ligase	RNA polymerase			
	Polynucleotide product		two (double-stranded) DNA molecules	mRNA			
	Letters of the four nitrogenous bases in the product A, T, C, G A, U, C, G						

[©] Oxford University Press www.oxfordsecondary.com

4 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
5(b)	mRNA idea of carries genetic code from nucleus to ribosomes ✓ rRNA idea of forms structure of ribosomes ✓ tRNA idea of carries amino acid AND binds to (complementary bases on) mRNA✓		3	AO1 2.1.3g
6(a)(i)	AAU ACA UCG ✓		1	AO2 2.1.3di and f
6(a)(ii)	UUA UGU AGC ✓		1	AO2 2.1.3di, f, and g
6(b)(i)	degeneracy / degenerate ✓		1	AO1 2.1.3f
6(b)(ii)	triplet / codon , changes ✓ (but) same amino acid is coded ✓ primary structure of polypeptide remains the same ✓		Max 2	AO2 6.1.1a
6(c)	stop codon / determines length of mRNA / AW ✓		1	AO2 2.1.3f
7	Level 3 (5–6 marks) Describes the roles of enzymes in replication and the uses of enzymes in genetic manipulations. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3–4 marks) Describes a role of an enzyme in DNA replication and a use of an enzyme in genetic manipulations.	Indicative scientific points may include: DNA replication Helicase: unwinding the double helix; unzipping / breaking hydrogen bonds DNA polymerase: catalyses synthesis of new DNA polynucleotide; proofreading	6	AO1 2.1.3e 6.1.3d, e, and fii

© Oxford University Press www.oxfordsecondary.com

4 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
	There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant.	DNA ligase: catalyses formation of phosphodiester bonds		
	Level 1 (1–2 marks) Describes a role of an enzyme in DNA replication or a use of an enzyme in genetic manipulations. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	 genetic manipulations Restriction enzymes: cuts DNA at specific sites; forms DNA fragments; uses in sequencing, electrophoresis, genetic engineering, DNA profiling. Taq DNA polymerase: stable at high temperatures; use in PCR. DNA ligase: use in genetic engineering to form recombinant DNA. 		
8	Level 3 (5–6 marks) Describes DNA replication in detail, with no significant errors and explains the term 'semi-conservative'. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3–4 marks) Describes DNA replication, with few errors and explains the term 'semi-conservative'. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1–2 marks) Describes some aspects of DNA replication. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms.	Indicative scientific points may include: DNA replication Histone proteins removed DNA double helix unwound by helicase Hydrogen bonds between strands are broken by helicase Both strands are templates Activated mononucleotides form hydrogen bonds with bases on the template strands Complementary base pairing Sugar-phosphate backbone is formed in new strands	6	AO1 2.1.3e

© Oxford University Press www.oxfordsecondary.com

4 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
	0 marks No response or no response worthy of credit.	 Phosphodiester bonds formed Catalysed by DNA polymerase Semi-conservative: In the two double-stranded DNA molecules, the template strand is conserved, but the other strand is newly synthesised. 		

Skills box answers

Question	Answer
1	C = 32% T = 18%
2	A = 19%
3	G and C = 17% A and U = 33%

© Oxford University Press www.oxfordsecondary.com