

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	circle drawn around CH_3 \checkmark	Accept a clear annotation that indicates CH_3	1	AO1 2.1.2.k
1(b)(i)	(R _f =) 0.38 ✓✓	The correct answer of 0.38 should be awarded 2 marks even when no working is shown Accept any value in the range 0.36–0.40 If the final answer is incorrect, 1 mark should be awarded for dividing any value by 5(cm)	2	AO2 2.1.2.s(i)
1(b)(ii)	$R_{\rm f} = 0.13 \checkmark$ glutamine \checkmark		2	AO2 2.1.2.s(i)
1(b)(iii)	Any two from: similar chemical properties ✓ similar R groups ✓ similar solubility ✓	Accept alternative wording	2 max	AO2 2.1.2.s(i) 2.1.2.s(ii)
1(b)(iv)	Any two from: <i>idea of</i> leave a larger gap between the pencil line and the solvent ✓ add cap to jar (to prevent solvent evaporation) ✓ <i>idea of</i> monitor solvent rather than leaving it for a set time ✓		2 max	AO3 2.1.2.s(i) 2.1.2.s(ii)
2(a)	hydrogen bond shown between O of one molecule and H of another ✓ negative dipole shown on both O atoms ✓ positive dipole shown on all 4 H atoms ✓	Hydrogen bonds can be represented by dotted or dashed lines	3	AO1 2.1.2.a

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Answers		Extra information	Mark	AO Spec reference
2(b)	Any three from: blood plasma is (predominantly) water ✓ glucose and amino acids are polar ✓ glucose has O–H bonds ✓ amino acids have N–H bonds ✓ hydrogen bonds form between molecules and water ✓				3 max	AO1 2.1.2.a 2.1.2.d 2.1.2.k 3.1.2.d
2(c)	stomata ✓ transpiration ✓ cohesion ✓ adhesion ✓			4	AO1 3.1.3.d	
2(d)	Molecule being hydrolysed	Bond broken	Molecule(s) formed	Award one mark for each correct row in the table	4	AO1 2.1.2.e 2.1.2.i 2.1.2.l
	starch	glycosidic	maltose			
	sucrose	glycosidic	glucose and fructose			
	triglyceride	ester	fatty acids and glycerol			
	polypeptide/peptide /dipeptide	peptide	amino acids			
3(a)	sodium hydroxide ✓ volumes ✓ purple / violet ✓			3	AO1 2.1.2.q	
3(b)(i)	<i>idea that</i> green colour indicates <i>idea that</i> no conclusion can be r sugar without knowing the conc <i>idea that</i> the sugar could be and	nade about the co centration and vo	oncentration of reducing ume of Benedict's added ✓		3	AO3 2.1.2.q

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
3(b)(ii)	Any two from: conduct Benedict's test (which would give a negative result) ✓ add dilute HCl ✓ boil ✓ neutralise with sodium hydroxide ✓ conduct the Benedict's test again ✓		3 max	AO1 2.1.2.q
3(c)	 B blood plasma ✓ explanation: positive result for (named) reducing sugar ✓ C sieve tube fluid ✓ explanation: positive result for sucrose / non-reducing sugar ✓ idea that A cannot be either sample because neither would contain starch ✓ 		4 max	AO3 2.1.2.q 3.1.3.f
3(d)	<i>idea that</i> the sample should be mixed first with ethanol rather than water ✓ decant into water rather than ethanol ✓ <i>idea that</i> the mixture does not need to be heated ✓		2 max	AO3 2.1.2.q
4(a)(i)	$\begin{array}{c} C, H, O, N \checkmark \\ S \checkmark \end{array}$	Accept names or chemical symbols for each element	2	AO2 2.1.2.c
4(a)(ii)	(34 350 × 3 =) 103 050 (RNA nucleotides)	Accept 103 053 (if a stop codon is referenced) or 103 056 (if a stop codon and a start codon are referenced)	1	AO2 2.1.3.f
4(b)	Any five from: <i>idea that</i> the primary structure is a polypeptide containing 348 amino acids ✓ secondary structure has alpha helices ✓ formed by hydrogen bonds ✓ tertiary structure has disulphide bonds ✓ (rhodopsin is) a glycoprotein / conjugated ✓ retinal is a cofactor / prosthetic group ✓	The descriptions should be linked to the correct level of protein structure for the marks 1–4 to be awarded.	5 max	AO2 2.1.2.m

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Answers		Extra information	Mark	AO Spec reference
	<i>idea that</i> (rhodopsin must ha membrane) and hydrophilic r					
4(c)(i)	globular ✓ Plus, any two marks from: specific 3D shape (which can be inferred from the presence of an active site, as it is an enzyme) ✓ no repeating pattern / many different regions ✓ enzymatic role ✓		Accept alternative wording	3 max	AO2 2.1.2.n 2.1.2.o	
4(c)(ii)	tertiary				1	AO2 2.1.2.m 2.1.4.c
4(c)(iii)	Any three from: hydrogen bonds break ✓ enzyme denatures ✓ tertiary structure changed ✓ active site no longer complementary to substrate / ADP ✓			3 max	AO1 2.1.4.d 2.1.4.i	
5(a)(i)	Molecule	glycogen	amylopectin	Award one mark for each correct row in the table	3	AO1 2.1.2.f
	Type of glycosidic bonds	1,4 and 1,6 links	1,4 and 1,6 links			
	Helical?	yes	yes			
	Branched?	yes	yes			
5(a)(ii)	Any two from: insoluble ✓ compact due to branching ✓ <i>idea that</i> branches increases	rate of hydrolysis w	hen glucose is required ✔		2 max	AO1 2.1.2.g

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
5(b)(i)	The H and OH on carbon 1 face different directions \checkmark	Accept an annotated diagram Accept alternative wording	1	AO1 2.1.2.d
5(b)(ii)	Any three from: insoluble ✓ hydrogen bonds / cross links between polysaccharide chains ✓ increase strength ✓ (for) structural support ✓	Accept alternative wording	3 max	AO1 2.1.2.g
6(a)(i)	<i>idea of</i> dilute 1 part protein solution to 4 parts water \checkmark		1	AO2 2.1.2.r
6(a)(ii)	Any one from: use a clean pipette each time ✓ <i>idea of</i> remember or write down the order of the solutions (because cuvettes cannot be labelled) ✓		1 max	AO3 2.1.2.r
6(a)(iii)	Any two from: the biuret test produces a purple colour ✓ (which means) green light is absorbed ✓ (using the filter) increases the accuracy of the results ✓		2 max	AO3 2.1.2.q 2.1.2.r
6(a)(iv)	x-axis labelled 'percentage (concentration of) protein (solution)' AND y-axis labelled 'absorbance / AU' ✓ straight line from origin showing a positive correlation ✓		2	AO2 2.1.2.r
6(b)	Any two from: protein solution concentration / volume ✓ temperature ✓ volume of protease solution ✓ biuret solution concentration / volume ✓ pH ✓		2 max	AO3 2.1.2.r

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
7	 Level 3 (5-6 marks) Provides descriptions of the properties of several molecules and explains their roles in membrane function. There is a well-developed line of reasoning, which is clear and logically structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3-4 marks) Provides descriptions of the properties of molecules and at least one explanation of a role in membrane function. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Provides a description of a property of a molecule or an explanation of a role in membrane function. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit. 	 Indicative content: Phospholipid hydrophilic head and hydrophobic tail creates physical barrier while allowing regulated exchange of substances in and out of the cell cholesterol small ✓ hydrophobic and hydrophilic regions stabilises membranes glycoproteins specific shapes and molecular groups receptors to specific molecules carrier/channel proteins specific tertiary structure facilitated diffusion (through carrier or channel proteins) and active transport (through carrier proteins) of specific molecules and ions 	6	A01 2.1.2.j 2.1.5.b
8	Level 3 (5–6 marks) Describes similarities and differences between both pairs of polysaccharides with few or no errors. There is a well-developed line of reasoning, which is clear and logically structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative.	Indicative content: Chitin and cellulose Similarities: • 1,4 links • No branching or helices • Cross links between polymer chains	6	AO2 2.1.2.g

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
	 Level 2 (3-4 marks) Describes similarities and differences between one pair of polysaccharides with few or no errors OR describes similarities and differences between both pairs with some errors. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Describes similarities or differences for at least one pair of polysaccharides. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit. 	 Differences: Cellulose has β-glucose monomers Cellulose does not contain nitrogen Arabinoxylan and amylopectin Similarities: 1,4 links Branching No links between polymer chains Differences: Amylopectin has 1,6 links rather than 2, 3 links Amylopectin is not helical Amylopectin has only one monomer (α-glucose) 		

۲

۲

۲

Skills box answers

1.	Test tube	Final concentration of sodium chloride (mol dm ⁻³)	Volume distilled water (cm ³)	Volume 1 mol dm ⁻³ sodium chloride solution (cm ³)	Final volume (cm ³)
	Α	0.00	10.0	0.0	10.0
	В	0.25	7.5	2.5	10.0
	С	0.50	5.0	5.0	10.0
	D	0.75	2.5	7.5	10.0
	Е	1.00	0.0	10.0	10.0

2.	Test tube	Final concentration of glucose (mol dm⁻³)	Volume distilled water (cm ³)	Volume 2 mol dm ⁻³ glucose solution (cm ³)	Final volume (cm ³)
	Α	0.0	10.0	0.0	10.0
	В	0.1	9.5	0.5	10.0
	С	0.3	8.5	1.5	10.0
	D	0.5	7.5	2.5	10.0
	Е	0.7	6.5	3.5	10.0
	F	0.9	5.5	4.5	10.0
	G	1.0	5.0	5.0	10.0

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲