

23 Manipulating genomes - answers

Question	Answers		Extra information	Mark	AO Spec reference
1(a)	Any two from: classification ✓ disease (risk) analysis ✓ forensics / criminal investigations / paternity testing ✓			2 max	AO1 6.1.3(c)
1(b)(i)	Stage of DNA profiling	How is this achieved?	One mark per correct row	4	AO1 6.1.3(c)
	amplification of DNA	PCR			6.1.3(d)
	digestion / fragments produced / AW	the use of restriction endonucleases			6.1.3(e)
	separation (of fragments)	electrophoresis			
	visualisation of banding patterns	hybridisation / radioactive probes / fluorescent probes			
1(b)(ii)	fragments should not be placed at the anode / be placed at the cathode ✓ (because) DNA is negatively charged / moves towards the positive electrode ✓ <i>idea that</i> electrophoresis should not (necessarily) be run for 2 hours ✓ <i>idea that</i> electrophoresis needs to be stopped before fragments reach the anode ✓		Accept progress of electrophoresis should be monitored	4	AO3 2.1.3(g) 6.1.1(b)
1(b)(iii)	more variation (in VNTRs) ✓ idea of profiles more likely to be unique / differentiate ✓		Accept reverse argument	2	AO2 2.1.3(g) 6.1.1(b) 6.1.3(c)
1(c)	idea that profiling produces a fingerprint / unique pattern (from a specific section of DNA) ✓ idea that sequencing determines the order of DNA bases ✓			2	AO1 6.1.3(a) 6.1.3(c)
2(a)	hydrogen ✓ 55°C ✓		Accept any temperature value in the range 50–56 °C	3	AO1 6.1.3(d)
	(free) nucleotides ✓				

[©] Oxford University Press www.oxfordsecondary.com

23 Manipulating genomes - answers

Question	Answers		Extra information	Mark	AO Spec reference	
2(b)(i)	Number of cycles	Number of fragments		Award one mark per correct box Accept correct 2 ⁿ and log10 values (i.e., 2 ⁴ and 10 ^{1.2}) for row 1.	4	AO2 6.1.3(d)
	4	16				
	6	6 2 ⁶				
	8	256				
	11	11 10 ^{3,3113}				
2(b)(ii)	Any two from: not enough primers ✓ not enough (free) nucleotide ✓ primers do not join ✓ temperature damage to fragment / template / strand ✓ strands fail to separate ✓		Accept alternative wording for 'not enough'	2 max	AO2 6.1.3(d)	
3(a)(i)	DNA polymerase ✓			1	AO2 6.1.3(a)	
3(a)(ii)	idea of add solutions of each nucleotide (A, T, G, C) separately / one at a time ✓		Accept ensure each nucleotide produces a different wavelength / type of light	1	AO3 6.1.3(a)	
3(a)(iii)	Any four from: luciferin is the substrate ✓ (which is) complementary (in shape) to the active site of luciferase ✓ luciferin binds to active site ✓ induced fit ✓ enzyme-substrate / luciferase-luciferin complex ✓			4 max	AO2 2.1.4(c)	

23 Manipulating genomes - answers

Question	Answers	Extra information	Mark	AO Spec reference	
3(b)	bioinformatics is the creation of databases / algo be used to solve biological questions) ✓ idea that computational biology is the applicatio data are analysed to interpret the data ✓		2	AO1 6.1.3(b)	
4(a)(i)	(using) DNA ligase ✓		1	AO2 6.1.3(f)(ii)	
4(a)(ii)	idea of to distinguish GM mosquitoes from norma		1	AO2 6.1.3(f)	
4(a)(iii)	Any two from: stops transcription ✓ prevents DNA polymerase from binding (to DNA pidea of causes post-transcriptional (mRNA) editing		2 max	AO2 2.1.3(g) 6.1.1(b)	
4(a)(iv)	males do not bite humans / females could bite humans ✓			1	AO2 6.1.3(f)
4(a)(v)	<i>idea of</i> to allow GM males to develop and be released ✓			1	AO2 6.1.3(f)
4(b)	Method of vector transfer	Organisms for which this method can be used	Award one mark per correct box	3	AO1 6.1.3(f)(ii)
	viral (transfer) / lipsomes	animals			
	viral (transfer) / bacteriophage / plasmid and electroporation / plasmid and culture heating	bacteria			
	A. tumefaciens infection	plant(s) / named plant taxon			

23 Manipulating genomes - answers

Question		Answers		Extra information	Mark	AO Spec reference
5(a)(i)	Any two from: stem cells are undifferentiated / a source of new red blood cells ✓ all (new) red blood cells (derived / differentiated from these stem cells) would be healthy ✓ no rejection by the immune system ✓			Accept alternative wording	2 max	AO2 2.1.6(j) 2.1.6(m) 6.1.3(h)
5(a)(ii)	(gene therapy) avoids immune response / rejection ✓			Accept reverse argument	1	AO1 6.1.3(h)
5(a)(iii)	idea of effects of germline / embryonic gene therapy are uncertain ✓ idea of lack of consent may breach human rights ✓ idea of technology could be used for unethical applications ✓				2 max	AO2 6.1.3(h)
5(b)	Therapy type	somatic cell therapy	germline therapy	Award one mark per correct row	3	AO1 6.1.3(h)
	May require repeat treatments	✓				
	May target stem cells	✓	✓			
	Is currently being applied to develop treatments for diseases	✓				
6	Any five from: idea that the best method will depend on the application/aim/research being conducted ✓			5 max	AO3 6.1.3(a)	
	points supporting the student (RS II) is quickest / has the shortest s (RS II) can read the longest sequence					
	points not supporting the student (RS II) is the most expensive ✓ (RS II) cannot read many bases per run compared to the Illumina methods ✓ (RS II) has the highest error rate ✓					

[©] Oxford University Press www.oxfordsecondary.com

23 Manipulating genomes - answers

Question	Answers	Extra information	Mark	AO Spec reference
7	Level 3 (5–6 marks) Outlines most of the differences between semi-conservative replication and PCR, with no or few omissions or errors. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3–4 marks) Outlines some differences between semi-conservative replication and PCR. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1–2 marks) Outlines some relevant aspects of semi-conservative replication and PCR.	 Indicative content: Semi-conservative replication occurs in cells / PCR occurs in vitro Chromosomes are replicated in semi-conservative replication, (shorter) DNA fragments are replicated in PCR Strands are separated using helicase in semi-conservative replication / high temperatures break strands in PCR PCR can be used to replicate and double DNA quantities 	6	AO1 2.1.3(e) 6.1.3(d)
hampered by O marks	The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	many times / each semiconservative replication doubles DNA quantities once • DNA polymerase is resistant to high temperatures in PCR (i.e. Taq DNA polymerase) / in most cases, DNA polymerase is not resistant to high temperatures in semi-conservative replication Primers added in PCR		

23 Manipulating genomes - answers

Question	Answers	Extra information	Mark	AO Spec reference
8	Level 3 (5-6 marks) Describes the use of PCR in both applications, with no or few errors and omissions. There is a well-developed line of reasoning, which is clear and logically structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3-4 marks) Describes the use of PCR in both applications, with some errors and omissions. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Describes some correct aspects of the use of PCR, with significant errors and omissions. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	 Indicative content: DNA sequencing Amplifies DNA quantities to provide sufficient material for the sequencing process Interrupted / chain termination PCR Some nucleotide bases are modified to terminate the growing chain and stop PCR Different chain lengths are produced The final bases can be read through different colours of fluorescence Credit references to other sequencing techniques that use PCR Forensic analysis Often small amounts of DNA are present at crime scenes PCR amplifies the quantity of DNA available For use in electrophoresis / DNA profiling Credit references to relevant DNA sequences (e.g., VNTRs) Credit details of the PCR process 	6	AO1 6.1.3(a) 6.1.3(b) 6.1.3(d)

23 Manipulating genomes - answers

Skills box answers

Question	Answer	
1	5	
2	UGACAGAGUCUCCUC	
3	ACU, GUC, UCA, GAG, GAG	
4	Introns are removed from strands of pre-RNA	
5	$51 \times 3 = 153$ $2 \times 3 = 6$ = 159 bases	

