

Question	Answers	Extra information	Mark	AO Spec reference
1(a)	converts stimulus / light energy to action potential / electrical energy \checkmark	Accept 'chemical energy' instead of 'electrical energy' (because light detection stimulates several events in a cone cell, including a change in retinal's shape, that involve changes in chemical energy)	1	AO2 5.1.3(a)
1(b)	Any three from: sodium ion channels are stretch-mediated / open when (receptor) membrane is stretched ✓ sodium ions diffuse into sensory neurone ✓ (receptor membrane is) depolarised ✓ generator potential ✓ threshold potential reached ✓ action potential passes along sensory neurone ✓	Accept 'Na' for 'sodium' and 'Na+' for 'sodium ions' throughout	3 max	AO1 5.1.3(a)
1(c)(i)	Any two from: molecule binds to (olfactory) receptor ✓ receptor molecule changes shape ✓ sodium ion channel opens ✓ sodium ions diffuse into sensory neurone / neurone ✓	Accept 'Na' for 'sodium' and 'Na ⁺ ' for 'sodium ions' throughout[2 max	AO2 5.1.3(a)
1(c)(ii)	receptors have different binding sites / shapes / conformations / structures ✓ <i>idea of</i> each binding site is specific / complementary to a particular molecule ✓		2	AO2 5.1.3(a)
1(d)	Na ⁺ ions diffuse into receptor / depolarisation of receptor membrane / generator potential / receptor potential ✓ action potential passes along sensory neurone ✓ <i>idea of</i> brain interprets nerve impulses as pain ✓		3	AO2 5.1.3(a)

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
2(a)	Any two from: cell body at the end of axon ✓ dendrites on cell body ✓ no dendron ✓	Accept alternative wording	2 max	AO1 5.1.3(b)
2(b)(i)	Any three from: myelination increases conduction speed ✓ <i>idea that</i> conduction speed is positively correlated with axon diameter ✓ (increase in) axon diameter has greater effect in myelinated neurones ✓ <i>idea that</i> relationship between axon diameter and conduction speed is (almost / approximately) directly proportional in myelinated neurones ✓	Accept reverse argument	3 max	AO3 5.1.3(c)
2(b)(ii)	'conduction speed (m s ⁻¹ or m/s)' on y axis AND 'diameter of axon (μm)' on x axis ✓ appropriate scale ✓ all data points accurate to within half a grid unit AND suitable line of best fit ✓		3	AO2 5.1.3(c)
2(b)(iii)	Any two from: (myelin provides) electrical insulation ✓ saltatory conduction ✓ <i>idea that</i> depolarisation only occurs at nodes of Ranvier ✓ <i>idea of</i> longer local currents ✓		2 max	AO1 5.1.3(b) 5.1.3(c)
2(b)(iv)	increased kinetic energy / diffusion rate of ions \checkmark		1	AO1 5.1.3(c)
3(a)(i)	Any three from: sodium-potassium pump \checkmark 3 Na ⁺ ions pumped out (of neurone) for every 2 K ⁺ ions pumped in \checkmark (some) K ⁺ ion channels remain open / (some) K ⁺ ions leak back out of the neurone \checkmark potential difference of -70 mv \checkmark	Accept - 60 – 75 mv	3 max	AO1 5.1.3(c)

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
3(a)(ii)	<i>idea of</i> different activity or amount of sodium–potassium pumps \checkmark <i>idea of</i> different amount of K ⁺ ion channels \checkmark		1 max	AO2 5.1.3(c)
3(b)	Any three from: Purkyne neurone has lower / less positive action potential peak ✓ shorter duration of action potential / faster repolarisation ✓ more frequent action potentials ✓ Purkyne neurone has hyperpolarisation AND CA1 has no clear hyperpolarisation ✓	Accept reverse arguments for the CA1 neurone throughout Accept 'refractory period' for 'hyperpolarisation'	3 max	AO2 5.1.3(c)
3(c)	<i>idea that</i> stimulus must be above threshold value to produce action potential ✓ action potential always the same magnitude / shape (in a particular type of neurone) ✓		2	AO1 5.1.3(c)
4(a)	Any three from: <i>idea of</i> ensuring impulses travel in one direction ✓ <i>idea of</i> (multiple postsynaptic neurones allows) signals to be passed to many effectors ✓ spatial summation / described ✓ temporal summation / described ✓ <i>idea of</i> (summation) allows indication of stimulus strength ✓		3 max	AO1 5.1.3(d)
4(b)	3 marks for correct order of 1 3 6 4 2 5 √ √ √	If 3 marks are not awarded, allow one mark for 1 and 2 being in the correct boxes and one mark for 5 and 6 being in the correct boxes.	3	AO1 5.1.3(d)

۲

© Oxford University Press www.oxfordsecondary.com

۲

 (\bullet)

Question	Answers	Extra information	Mark	AO Spec reference
4(c)	Any three from: acetylcholinesterase ✓ hydrolyses / breaks down acetylcholine ✓ (forming) choline and ethanoic acid ✓ (which) diffuse back into presynaptic neurone ✓		3 max	AO1 5.1.3(d)
5(a)	Any two from: no / fewer nerve impulses ✓ stops sodium ions diffusing into neurones / depolarisation of neurones ✓ no action potentials ✓		2 max	AO2 5.1.3(c)
5(b)	Any two from: more exocytosis of dopamine into synaptic clefts ✓ more dopamine binds to receptors on postsynaptic membranes ✓ more action potentials in postsynaptic neurones ✓		2 max	AO2 5.1.3(d)
5(c)	Any two from: (more) dopamine remains in synaptic clefts ✓ (dopamine) (re)binds to postsynaptic receptors ✓ more action potentials in postsynaptic neurones ✓		2 max	AO2 5.1.3(d)
5(d)	fewer acetylcholine molecules can bind to postsynaptic receptors ✓ fewer action potentials in postsynaptic neurones ✓		2	AO2 5.1.3(d)
6	Level 3 (5–6 marks) Outlines the role of receptors in several areas of homeostasis with few or no errors. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative.	 Indicative content: An understanding of the interaction between stimuli, sensory receptors and the brain's autonomic areas (e.g., medulla oblongata and hypothalamus). 	6	AO1 3.1.2(g) 5.1.1(c) 5.1.1(d) 5.1.2(d) 5.1.3(a)

۲

© Oxford University Press www.oxfordsecondary.com

۲

 (\bullet)

Question	Answers	Extra information	Mark	AO Spec reference
	 Level 2 (3-4 marks) Outlines the role of receptors in homeostasis with some omissions or errors. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Outlines a role of a receptor in homeostasis. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	 An outline of the role of the medulla oblongata and receptors in the control of heart and breathing rate (very few details are expected to be known). The roles of thermoreceptors and the hypothalamus in thermoregulation. The roles of osmoreceptors and the hypothalamus in the control of water potential. 		
7	 Level 3 (5–6 marks) Describes similarities and differences with few or no errors. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3–4 marks) Describes similarities and differences with some omissions or errors. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1–2 marks) Describes similarities or differences with several omissions or errors. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	 Indicative content: Similarities: Both examples of cell signalling Respond to stimuli Rely on sensory receptors Have target cells / effectors Differences: Transmission in blood vs neurones Neuronal communication is quicker More widespread response to hormones / more localised response to nerve impulses Hormonal effects are longer lasting 	6	AO1 5.1.3 5.1.4

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Skills box answers

۲

Question	Answer
1	Drawn in pen – should be pencil Lines too thick Lines too rough Lines uneven
2	medulla renal vein renal artery pelvis ureter fibrous capsule

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲