A Level OCR Biology

13 Classification and evolution - answers

Question	Answers	Extra information	Marks	AO Spec reference
1(a)	Any four from: grow a lawn / spread / colony of Pseudomonas \checkmark put a wire loop in a flame to sterilise the tweezers \checkmark place antibiotic/flucloxacillin discs at equal distances \checkmark leave to incubate for 12-18 hours \checkmark at a temperature of $37^{\circ} \mathrm{C}$ measure the zone of inhibition \checkmark	Allow 1 mark for stating aseptic technique Allow a time frame within this range Allow at body temperature	4 max	$\begin{gathered} \mathrm{AO3} \\ 1.2 .2(\mathrm{i}) \end{gathered}$
1(b)	Any three from: genetic variation / random mutation (in the bacteria) \checkmark selection pressure of the antibiotic / selective advantage due to new allele, meaning that the antibiotic does not kill the cell antibiotic resistant bacteria survive against the (action of the) antibiotic \checkmark antibiotic resistant bacteria multiply / divide / reproduce \checkmark increased population of antibiotic resistant bacteria / allele frequency \checkmark more of the population (of bacteria) are resistant (to the antibiotic) \checkmark	Allow by binary fission	3 max	$\begin{gathered} \text { AO1 } \\ 4.1 .1(\mathrm{n}) \\ 4.2 .2(\mathrm{~h}) \\ 4.2 .2(\mathrm{i}) \end{gathered}$
1(c)	1.2×10^{7} cells min $^{-1} \checkmark \checkmark$	$\frac{2.3 \times 10^{8}}{20}$	2	$\begin{aligned} & \text { AO2 } \\ & 4.2 .2 \end{aligned}$
2(a)	Indicative content: - Random mutation for longer legs - Causes intraspecific variation - Selection pressures of getting food and avoiding drowning are involved - Survival of the fittest favours lizards with longer legs, which is a selective advantage - Interbreeding between lizards with longer legs - Advantageous allele for longer legs passed to offspring - Allele frequency for long legs increases in the population - Lizards with shorter legs die out	Level 3 (5-6 marks): Full and detailed explanation as to why natural selection may have contributed to lizards with longer legs surviving. There is a well-developed comparison. The information presented is relevant and clearly explained.	6	$\begin{gathered} \text { AO2 } \\ 4.2 .2(\mathrm{f}) \\ 4.2 .2(\mathrm{~h}) \\ 4.2 .2(\mathrm{n}) \\ 6.1 .2(\mathrm{e}) \\ 6.1 .2(\mathrm{~g}) \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level OCR Biology

13 Classification and evolution - answers

Question	Answers	Extra information	Marks	AO Spec reference
		Level 2 (3-4 marks): Response includes an explanation, including at least two points as to why natural selection may have contributed to lizards with longer legs surviving. There is a reasonable comparison and sequence. The information presented is in the most-part relevant and well-explained. Level 1 (1-2 marks): Response includes a brief explanation, including at least one point as to why natural selection may have contributed to lizards with longer legs surviving. The information is basic and communicated in an unstructured way. The information is supported by limited method which may be unclear. 0 marks No response worthy of credit.		
2(b)	Any two from: competition for food \checkmark disease \checkmark predation \checkmark avoiding drowning \checkmark		2 max	$\begin{gathered} \text { AO1 } \\ 4.2 .2(\mathrm{~g}) \\ 4.2 .2(\mathrm{~h}) \\ 6.1 .2(\mathrm{e}) \\ 6.1 .2(\mathrm{~g}) \end{gathered}$
2(c)	population is small \checkmark alleles could disappear if individuals do not reproduce \checkmark	Allow a specific allele, such as how long the leg length is	2	AO2 6.1.2(g) $6.1 .2(\mathrm{~h})$

A Level OCR Biology

13 Classification and evolution - answers

| Question | Answers | AO
 Extra information |
| :--- | :--- | :--- | :--- |
| 3(a) | directional \checkmark
 one extreme phenotype is selected for over the other \checkmark
 dark green beetles have the selective advantage over light green \checkmark | Marks |
| Spec reference | | |

A Level OCR Biology

13 Classification and evolution - answers

Question	Answers	Extra information	Marks	AO Spec reference
4(c)	Any four from: Met is the start codon \checkmark Met signals the beginning of translation at the ribosome \checkmark mRNA binds with the ribosome \checkmark tRNA carries the specific amino acids to the ribosome \checkmark anticodon and codon form complementary bonds via hydrogen bonding \checkmark mRNA is read three bases at a time \checkmark peptide bonds form between the amino acids \checkmark the number and order of amino acids forms the protein's primary structure \checkmark		4 max	AO2 $2.1 .2(\mathrm{~m})$ $2.1 .3(\mathrm{~g})$
5(a)	Patella \checkmark		1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.2(a) } \end{gathered}$
5(b)	$5 \mathrm{~m}: 3,6,36 \checkmark$ $30 \mathrm{~m}: 4,0,0 \checkmark$ $40 \mathrm{~m}: 9,-7,49 \checkmark$	1 mark per correct row	3	$\begin{gathered} \mathrm{AO2} \\ 4.2 .2(\mathrm{f}) \end{gathered}$
5(c)(i)	$\begin{aligned} & 6\left(\Sigma d^{2}\right)=1824 \\ & n\left(n^{2}-1\right)=990 \\ & r_{\mathrm{s}}=-0.84 \end{aligned}$	Allow -0.8	3	$\begin{gathered} \mathrm{AO2} \\ 4.2 .2(\mathrm{f}) \end{gathered}$
5(c)(ii)	the further away from the lowest water mark, the lower the mean diameter of sea snails negative correlation		2	$\begin{gathered} \mathrm{AO3} \\ 4.2 .2(\mathrm{f}) \end{gathered}$

A Level OCR Biology

13 Classification and evolution - answers

Question	Answers	Extra information	Marks	AO Spec reference
5(d)	Any two from: increase the number of transects \checkmark sample at shorter intervals along the transect \checkmark include more (than 10) sea snails in the sample at each interval (along the transect)		2 max	$\begin{gathered} \text { AO3 } \\ 4.2 .1(\mathrm{~b}) \\ 4.2 .2(\mathrm{f}) \end{gathered}$
6(a)	Any two from: chitin cell wall \checkmark nucleus \checkmark saprotrophic \checkmark mycelium present \checkmark hyphae present	Allow eukaryotic/multinucleate	2 max	$\begin{gathered} \mathrm{AO1} \\ 4.2 .2(\mathrm{c}) \end{gathered}$
6(b)	Level 3 (5-6 marks) Full and detailed explanation as to why natural selection may have contributed resistant fungi surviving. There is a well-developed comparison. The information presented is relevant and clearly explained. Level 2 (3-4 marks) Response includes an explanation, including at least two points as to why natural selection may have contributed to resistant fungi surviving. There is a reasonable comparison and sequence. The information presented is in the most-part relevant and well-explained. Level 1 (1-2 marks) Response includes a brief explanation, including at least one point as to why natural selection may have contributed to resistant fungi surviving.	Indicative scientific points may include: - Initial decrease in apple scab shows that the fungicide is effective - (subsequent) increase in apple scab shows that the fungus is becoming resistant to the fungicide - Random mutation for fungus causing resistance - Causes intraspecific variation between resistant and non-resistant fungi - Survival of the fittest favours resistant fungi - Selection pressure and selective advantage for resistant fungi - (asexual) reproduction of resistant fungi - Advantageous allele for resistant fungi passed to offspring	6	$\begin{gathered} \text { AO3 } \\ 4.2 .2(\mathrm{~h}) \\ 4.2 .2(\mathrm{i}) \end{gathered}$

A Level OCR Biology

13 Classification and evolution - answers

Question	Answers	Extra information	Marks
	The information is basic and communicated in an unstructured way. The information is supported by limited method which may be unclear. $\mathbf{0}$ marks No response worthy of credit	- Allele frequency for resistant fungi increases in the population Non-resistant fungi are killed by the fungicide	
$\mathbf{6 (c)}$	Any four from: heat DNA strand to $90-98^{\circ} \mathrm{C}$ to denature it \checkmark annealing at $50-65^{\circ} \mathrm{C} \checkmark$ extension at $70-75^{\circ} \mathrm{C} \checkmark$ use of primers \checkmark use of nucleotides \checkmark repeat cycle \checkmark	Allow any temperature within this range Allow any temperatures within these ranges	4 max

Skills box answers

Question	Answer
$\mathbf{1}$	$\mathbf{A}=0.03$ $\mathbf{B}=4.5$ $\mathbf{C}=2.3$ $\mathbf{D}=0.07$ $\mathbf{E}=0.6$ control $=0.0$
$\mathbf{2}$	\mathbf{B}
$\mathbf{3}$	antibiotic \mathbf{B} may only be inhibiting growth rather than killing the bacteria; it may be more soluble than the other antibiotics, so it diffused further
$\mathbf{4}$	to check that bacterial growth was not inhibited by a chemical in the paper disc; a suitable control would be a paper disc soaked in sterile, distilled water

