AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
01.1	force: newtonmeter or amount of masses/weights on end of spring extension: ruler		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
01.2	measure the length of the spring with the ruler apply a known force/ (hang up the spring and) hang a known weight on it measure the length again find the extension by subtracting the original length from the stretched length.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO2} \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
01.3	to get more accurate/precise measurements		1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
01.4	repeat it/ignore it when they are calculating the mean		1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
01.5	line graph the data are continuous/all numbers and no words/names		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO2} \\ & 4.5 .3 \end{aligned}$
02.1	non-contact - weight/force of the Earth on the wood contact force - upthrust/upwards force of the water on the wood		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.1.2 } \end{gathered}$
02.2	the forces are equal in magnitude and opposite in direction		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.1.1 } \\ 4.5 .1 .4 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
02.3	water resistance contact force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.1.2 } \end{gathered}$
03.1	work done $=$ force \times distance	accept $\mathrm{W}=\mathrm{Fs}$	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .2 \end{aligned}$
03.2	$\begin{aligned} & \text { work done }=20 \times 30 \\ & =600(\mathrm{Nm} \text { or J) } \end{aligned}$	accept 600 (Nm or J) with no working for two marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .2 \end{aligned}$
03.3	newton metres (Nm) joules (J)		1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .2 \end{aligned}$
03.4	friction		1	$\begin{aligned} & \mathrm{AO1} \\ & 4.5 .2 \end{aligned}$
03.5	chemical energy store will decrease (food/oxygen) thermal energy store (of the surrounding) will increase	do not accept answers involving changes in kinetic energy store (at constant speed, the kinetic energy store will stay at constant level)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .2 \end{aligned}$
04.1	any sensible suggestion, e.g., difficult to see the undeflected position of the ruler to measure from, difficult to see the extension		1	$\begin{aligned} & \text { AO3 } \\ & \text { 4.5.3 } \end{aligned}$
04.2	ignore the outlier 17 $\begin{aligned} & \text { average of the other two readings }=\frac{10+12}{2} \\ & =11 \end{aligned}$		1	$\begin{aligned} & \mathrm{AO2} \\ & 4.5 .3 \end{aligned}$

AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
04.3	one mark for correct plotting of four points two marks for correct plotting of all points one mark for curved line of best fit one mark for appropriate y-axis label and scale		4	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
04.4	no the line is not straight/linear (through origin)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
05.1	the first column is should be labelled mass in grams and not weight which would be in newtons (N) they should convert g to kg and then to N using weight = mass (in kg) xg		1 1	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.3 } \end{gathered}$
05.2	one mark for correct values of force converted from g one mark for correct plotting of at least four points one mark for labelled axes one mark for appropriate line of best fit		4	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .1 .3 \\ 4.5 .3 \end{gathered}$
05.3	original length $=$ intercept on x axis/when force on sample is zero $=3.0 \mathrm{~cm}$	allow answers between 2.5 cm and 3.5 cm	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
05.4	as the force increases the material becomes less stiff/easier to stretch or the same increase in force produces a bigger increase in length		1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
05.5	it would not be suitable the extension if not proportional to the force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & \text { 4.5.3 } \end{aligned}$

AQA GCSE Physics

	Answers		Extra information	Mark	\qquad
06.1	the force of the hand on the bag		or words to that effect	1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
06.2	inelastic deformation is deformation where the object does not return to its original size and shape when the force is removed			1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
06.3	Statement the graph for the plastic bag shows a non-linear relationship between force and extension		one mark for each correct row	2	$\begin{aligned} & \text { AO3 } \\ & \text { 4.5.3 } \end{aligned}$
		Correct			
		\checkmark			
	the graph for the plastic bag shows that is proportional to extension				
	a graph that is a straight line is likely to be for a spring	\checkmark			
	the material that produced a linear graph has been inelastically deformed				
06.4	$\begin{aligned} & \text { extension }=\text { stretched length }- \text { unstretched length } \\ & =3 \mathrm{~cm}-2 \mathrm{~cm} / 0.03-0.02 \\ & =1 \mathrm{~cm} / 0.01 \mathrm{~m} \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
07.2	force $=$ spring constant \times extension		allow $\mathrm{F}=$ ke	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
07.3	$\begin{aligned} & 2=k \times 0.01 \\ & k=\frac{2}{0.01}=200 \mathrm{~N} / \mathrm{m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
07.4	$\begin{aligned} & \text { energy }=0.5 \times \text { spring constant } \times \text { extension }^{2} \\ & =0.5 \times 200 \times 0.01^{2} \\ & =0.01 \mathrm{~J} \end{aligned}$	allow $\mathrm{E}=0.5 \mathrm{ke}^{2}$ accept 0.01 (J) with no working for two calculation marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
07.5	$0.01 \mathrm{~J}$ the work done on the spring is equal to the elastic energy stored in the spring		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
08.1	up arrow: force of the workbench on the tub down arrow: force of the Earth on the tub down arrow should be larger than the up arrow	accept 'normal' or 'reaction' accept 'weight' do not accept 'gravity' one mark for two equal length arrows pointing in opposite directions	3	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.4 } \end{gathered}$
08.2	the weight can be resolved into two components, one down the ramp and one at 90 degrees to the ramp there is a force of friction opposing the component of weight down the ramp which is smaller than the component of the weight (so there is a resultant force down the ramp and the tub accelerates)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.4 } \end{gathered}$
08.3	one mark for correct x and y labels one mark for horizontal line		2	AO3

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
08.4	any sensible suggestion, e.g., - as the mass increases, the frictional force increases - as the mass increases the component of the weight down the slope also increases, so the two effects cancel out		1	AO3
09.1	free body diagram e.g., up arrow: normal/reaction left arrow: driving force/18 000N right arrow: resistive force/12 000 N down arrow: weight/15 kN right arrow should be longer than all the other arrows	one mark for arrow left labelled driving force/18 000 N one mark for arrow right labelled resistive force/12 000N one mark for arrow downwards labelled weight/ 15 kN one mark for arrow upwards labelled normal force weight and normal arrows the same length, driving force arrow longer than resistive force arrow	4	$\begin{gathered} \text { AO2 } \\ 4.5 .1 .1 \\ 4.5 .1 .2 \\ 4.5 .1 .4 \end{gathered}$
09.2	```horizontally: resultant \(=18000-12000\) \(=6000 \mathrm{~N}\) to the left vertically: resultant \(=15000-15000\) \(=0 \mathrm{~N}\)```		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.4 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
09.3	$\begin{aligned} & \text { weight }=15000 \mathrm{~N} \\ & \text { weight }=\text { mass } \times \text { gravitational field strength } \\ & 15000=\text { mass } \times 9.8 \\ & \text { mass }=\frac{15000}{9.8} \\ & =1531 \mathrm{~kg} \end{aligned}$		1 1 1 1	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .1 .3 \end{gathered}$
09.4	both vertical arrows would change slightly in length but still cancel out / be the same size the horizontal arrows would not change		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.1.2 } \\ \text { 4.5.1.3 } \\ \text { 4.5.1.4 } \end{gathered}$
10.1	appropriate scale diagram e.g., $1 \mathrm{~cm}=10 \mathrm{~N}$ answer = 153 N	accept answers from 148 N to 158 N one mark for clear scale one mark for parallelogram drawn one mark for correct answer	3	$\begin{gathered} \mathrm{AO3} \\ \text { 4.5.1.4 } \end{gathered}$
10.2	(if angle increases) cos (angle) decreases so that tension increases so that the component of the tension stays the same/so that the resultant of the 2 tension forces stays the same		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ \text { 4.5.1.4 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
10.3	the angle between the vertical component of tension and the string $=60^{\circ}$ but the vertical component is $T \sin 60$ $\begin{aligned} & 2 T \sin 60=W=153 \\ & T=88 N \end{aligned}$ which is less than in arrangement A		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.5 .1 .4 \end{gathered}$
11.1	moment $=$ force \times distance	accept $\mathrm{M}=\mathrm{Fd}$	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .4 \end{aligned}$
11.2	$\begin{aligned} \text { moment } & =8 \times 1000 \\ & =8000 \mathrm{Nm} \end{aligned}$	accept $8000(\mathrm{Nm})$ with no working	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .4 \end{aligned}$
11.3	$\begin{aligned} & \text { clockwise moments }=\text { anticlockwise moments if the crane is balanced } \\ & \text { counterbalance weight } \times \text { distance from pivot }=\text { moment of load } \\ & \text { counterbalance weight } \times 4=8000 \\ & \text { counterbalance weight }=\frac{8000}{4} \\ & =2000 \mathrm{~N} \end{aligned}$	one mark for evidence of using law of moments	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1 AO2 4.5.4
11.4	low, high	both answers required for the mark	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .4 \end{aligned}$
12.1	force for spring $1=30 \mathrm{~N}$, force for spring $2=20 \mathrm{~N}$ the force for spring 1 is $\frac{30}{20}=1.5$ times bigger		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Physics

Practice answers

	Answers	Extra information	Mark	\qquad
12.2	spring 1 would feel stiffer than spring 2 it takes a bigger force to extend it by the same length		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
12.3	force (applied to a spring) $=$ spring constant \times extension	accept $\mathrm{F}=$ ke	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
12.4	spring 1: $\begin{aligned} & 48=k_{1} \times 0.08 \\ & k_{1}=600 \mathrm{~N} / \mathrm{m} \end{aligned}$ spring 2: $\begin{aligned} & 32=k_{2} \times 0.08 \\ & k_{2}=400 \mathrm{~N} / \mathrm{m} \end{aligned}$	accept any correct pair of values from the graph	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
13.1	force $=$ spring constant \times extension	accept $\mathrm{F}=\mathrm{ke}$	1	A01
13.2	$\begin{aligned} & \text { extension = final length } \text { - original length } \\ & =20.14-20.00=0.14 \mathrm{~m} \end{aligned}$		1	AO2
13.3	$\begin{aligned} & \text { weight of climber }=\text { mass } \times \mathrm{g} \\ & =80 \times 9.8 \\ & =784 \mathrm{~N} \\ & \text { using force }=\text { spring constant } \times \text { extension } \\ & 784=\text { spring constant } \times 0.14 \\ & \text { spring constant }=\frac{784}{0.14} \\ & =5600 \mathrm{~N} / \mathrm{m} \end{aligned}$	answer is given to two significant figures	1 1 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .1 .3 \\ 4.5 .2 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
13.4	the weight stays the same so the spring constant will be smaller	accept units of k are N / m so if weight (N) remains same and more metres then k is smaller	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.1.4 } \end{gathered}$
14.1	weight $=$ mass \times gravitational field strength	accept $\mathrm{W}=\mathrm{mg}$	1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$
14.2	$\begin{aligned} \text { weight } & =140 \times 9.8 \\ & =1372 \mathrm{~N} \end{aligned}$	accept 1372 (N) with no working for the two calculation marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.3 } \end{gathered}$
14.3	the centre of mass	accept centre of gravity	1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$
14.4	$\begin{aligned} & \text { (weight = mass } \times \text { gravitational field strength }) \\ & =140 \times 3.8 \\ & =532(\mathrm{~N}) \\ & \text { difference }=1372-532 \\ & =840 \mathrm{~N} \end{aligned}$ or $\frac{1372}{532}=2.6$ the difference in weight is 840 N or the weight on Earth is 2.6 times bigger	accept 532 (N) with no working for two calculation marks evidence of calculating difference or ratio with relevant comment for three marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .3 \end{gathered}$
14.5	non-contact the objects do not ned to be in contact for the force to act		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$

AQA GCSE Physics

Practice answers

