AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
01.1	$\begin{aligned} & \text { volume before }=72 \mathrm{~cm}^{3} \\ & \text { volume after }=97 \mathrm{~cm}^{3} \\ & \text { difference in volume = volume of clay } \\ & =97 \mathrm{~cm}^{3}-72 \mathrm{~cm}^{3} \\ & =15 \mathrm{~cm}^{3} \end{aligned}$		1 1	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.3 .1 .1 \end{gathered}$
01.2	resolution $=\frac{1}{2}$ smallest division $=\frac{1}{2} \times 5=2.5 \mathrm{~cm}^{3}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { A02 } \end{aligned}$
01.3	digital balance		1	AO2
01.4	$\text { density }=\frac{\text { mass }}{\text { volume }}$	allow $\rho=\frac{\mathrm{m}}{\mathrm{v}}$	1	A01
01.5	$\begin{aligned} & \text { density }=\frac{23.41}{15} \\ & =1.56 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$	accept 1.56 or 1.6 with no working shown for two marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .1 .1 \end{gathered}$
01.6	measure the length of each side (in cm)/measure the length, breadth and height cube the answer/multiply the length, breadth and height		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.1 } \end{gathered}$
02.1	vibrating potential moving fast kinetic		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.3 .2 .1 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
02.2	the internal energy changes from mainly potential to mainly kinetic/more kinetic	do not accept answers involving solids/liquids/gases	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.3.2.1 } \end{gathered}$
02.3	the particles in a gas are in random motion		1	$\begin{gathered} \text { AO1 } \\ 4.3 .2 .1 \end{gathered}$
03.1	$20^{\circ} \mathrm{C}$		1	AO2
03.2	$70^{\circ} \mathrm{C}$		1	AO2
03.3	energy transferred $=$ power \times time	allow $\mathrm{E}=\mathrm{P} \times \mathrm{t}$	1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.2.3 } \end{gathered}$
03.4	$\begin{aligned} & \text { energy }=1000 \times 2 \times 60 \\ & =120000 \mathrm{~J} \\ & \text { energy transferred }=\text { mass } \times \text { specific latent heat of vaporisation } \\ & 120000=\text { mass } \times 365000 \\ & \text { mass }=\frac{120000}{365000} \\ & =0.33 \mathrm{~kg} \end{aligned}$	allow $\mathrm{E}=\mathrm{mL}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .3 \end{gathered}$
03.5	an overestimate (the energy transferred to vaporise the water is lower because) some energy is transferred to the thermal energy store of the surroundings		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$
03.6	a line that starts at $20^{\circ} \mathrm{C}$ steeper than the original line becomes horizontal at $70^{\circ} \mathrm{C}$ at about 2 minutes		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
04.1	energy $=$ power \times time	allow $\mathrm{E}=\mathrm{P} \times \mathrm{t}$	1	A01
04.2	$\begin{aligned} & 2 \mathrm{~kW}=2000 \mathrm{~W} \\ & 2 \text { minutes }=120 \text { seconds } \\ & \text { energy }=2000 \times 120 \\ & =240000 \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.1 .1 .4 \\ 4.3 .2 .3 \end{gathered}$
04.3	$\begin{aligned} & \text { change in mass }=1.276-1.180=0.096 \mathrm{~kg} \\ & \text { energy transferred }=\text { specific latent heat } \times \text { change in mass } \\ & 240000 \mathrm{~J}=\text { specific latent heat of vaporisation } \times 0.096 \mathrm{~kg} \\ & \text { specific latent heat of vaporisation }=\frac{240000}{0.096} \\ & =2500000 \mathrm{~J} / \mathrm{kg} \\ & =2500 \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	allow 2500 with no substitution for two marks allow $E=m L$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$
04.4	the energy transferred was heating the material of the kettle/air around it as well as vaporising the water a lower mass of water vaporised than should have been the case so the value calculated was bigger than the textbook value		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$
05.1	the gas has been compressed/is exerting a big pressure on the inside of the container		1	$\begin{gathered} \text { AO1 } \\ 4.3 .3 .2 \end{gathered}$
05.2	the student has done work on the gas (so has transferred energy) so has increased the internal energy of the system (which produces an increase in temperature)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1/2 } \\ & \text { 4.3.3.3 } \end{aligned}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
05.3	when the student does work, the particles move more quickly/energy is transferred to the particles the average speed/kinetic energy of the particles increases, so the temperature increases		1 1	$\begin{gathered} \text { AO1 } \\ 4.3 .3 .3 \end{gathered}$
06.1	(when the student is in the shower) water evaporates to make water vapour the water vapour condenses when it comes in contact with the colder mirror and energy is transferred to the mirror		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.3 .1 .2 \end{gathered}$
06.2	$\begin{aligned} & \text { for converting all } \mathrm{kJ} \text { to } \mathrm{J}, \mathrm{~cm} \text { to } \mathrm{m} \\ & \text { the mass of water that condenses }=\frac{\text { energy }}{\text { specificlatent heat of vaporisaton }} \\ & =\frac{730000}{2265000} \\ & =0.322 \mathrm{~kg} \\ & \text { mass }=\text { density } \times \text { volume } \\ & \text { volume of water }=\frac{0.322}{1 \times 10^{-8}}=0.000322 \\ & \text { volume = area } x \text { thickness } \\ & \text { thickness of water }=\frac{0.000322}{0.6 \times 0.6}=8.95 \times 10^{-4} \mathrm{~m} \end{aligned}$		1 1 1 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.3 .1 .1 \\ 4.3 .2 .3 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	$\begin{gathered} \text { AO / } \\ \text { Specification } \\ \text { reference } \end{gathered}$
07.1	the particles in a solid are arranges in a regular pattern/array the particles in a gas are moving in all/random direction the particles in a solid are vibrating about a fixed position the particles in a gas are moving quickly		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2
07.2	the particles collide with the walls of the container each particle exerts a force on the wall pressure is force per unit area the total force of all the collisions of the particles per unit area is the pressure		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3
07.3	pressure on y-axis, temperature on x-axis straight line with positive gradient that intercepts y-axis above zero (does not need to be extrapolated)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.1.2.1 } \end{gathered}$
08.1	the steam is at a high temperature (and in the gas state) steam transfers latent heat energy to the milk (steam cools/changes to a liquid state and the temperature of the milk rises)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$
08.2	$\begin{aligned} & \text { convert } 242 \mathrm{~g} \text { to } 0.242 \mathrm{~kg} \text {, and } 3.93 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C} \text { to } 3930 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C} \\ & \text { temperature difference }=70-20=50^{\circ} \mathrm{C} \\ & \text { energy required }=\text { mass } \times \text { specific heat capacity } \times \text { change in temperature } \\ & =0.242 \times 3930 \times 50 \\ & =47553 \mathrm{~J}(\approx 48000 \mathrm{~J} \text { so about } 48 \mathrm{~kJ}) \end{aligned}$	allow $\mathrm{E}=\mathrm{mc} \Delta \theta$ allow 47533 with no substitution for three marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.3 .2 .2 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	AO / Specification reference
08.3	$\begin{aligned} & \text { convert } 2260 \mathrm{~kJ} / \mathrm{kg} \text { to } 2260000 \mathrm{~J} / \mathrm{kg} \\ & \text { energy }=\text { mass } \times \text { specific latent heat of vaporisation } \\ & 47553=\text { mass } \times 2260000 \\ & \text { mass }=\frac{47553}{2260000} \\ & =0.02 \mathrm{~kg} \end{aligned}$	allow $\mathrm{E}=\mathrm{mL}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 4.3 .2 .3 \end{gathered}$
08.4	Assume that all the energy transferred to the milk to heat it comes from the change of state of the steam.		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.3 } \end{gathered}$
09.1	B D the temperature isn't changing/doesn't change even though the substance is being heated		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$
09.2	solid it changes state twice/goes from solid to liquid, then liquid to gas		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \text { 4.3.1.2 } \end{gathered}$
09.3	A		1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$
09.4	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$
10.1	$\begin{aligned} & \text { volume }=(5)^{3} \\ & =125 \mathrm{~cm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.3.1.1 } \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
10.2	$\begin{aligned} & \text { density }=\frac{\text { mass }}{\text { volume }} \\ & 1.5=\frac{\text { mass }}{125} \\ & \text { mass }=1.5 \times 125 \mathrm{~cm}^{3} \\ & =187.5 \mathrm{~g} \end{aligned}$		1 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { AO } \\ \text { 4.3.1.1 } \end{gathered}$
10.3	sublimation		1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$
10.4	if the process is reversed, the material recovers its original properties		1	$\begin{gathered} \text { A01 } \\ \text { 4.3.1.2 } \end{gathered}$
10.5	the internal energy of the gas is bigger than the internal energy of the solid the particles have more kinetic energy/are moving faster		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.2 } \end{gathered}$
11.1	one mark for correct symbol one mark for correct label		2	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.1 } \end{gathered}$
11.2	(when they put the test tube into iced water) the temperature of the water decreases the resistance of the thermistor increases the potential difference across the thermistor increases $V_{\text {out }}$ decreases because the total potential difference across the thermistor and the resistor = 12 V at all times		1 1 1 1	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ \text { 4.2.1.4 } \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
11.3	find the potential difference across the resistor by measuring $\mathrm{V}_{\text {out }}$ find potential difference across thermistor by subtracting $\mathrm{V}_{\text {out }}$ from 12 V use $\frac{\text { potentialdifference across the resistor }}{\text { potentialdifference across the thermistor }}=\frac{\text { resistanceof resistor }}{\text { resistanceof thermistor }}$ to find the resistance of the thermistor use a graph/table of the resistance of the thermistor at different temperatures to work out the temperature of the water.		1 1 1 1	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & 4.2 .2 \end{aligned}$
11.4	sensible suggestions e.g., the human body continually generates thermal energy, but the water in the test tube does not		1	AO3
12	Level 3: Well organised answer with descriptions of reasons for calculations. Equations for power, efficiency and gravitational potential energy used		5-6	$\begin{aligned} & \mathrm{AO} 1 / 1 \\ & \mathrm{AO} 2 / 1 \end{aligned}$
	Level 2: Some relevant calculations, but descriptions lacking detail or missing, or parts of calculations/conversions incorrect.		3-4	4.1.1.4
	Level 1: Some relevant calculations completed, but unit conversions may be missing, and no explanation of method.		1-2	4.1.1.2
	No relevant comment.		0	

AQA GCSE Physics

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answers \& Extra information \& Mark \& \qquad

\hline \& \begin{tabular}{l}
Indicative content:

- calculate energy needed to be transferred to bulb:

$$
\begin{aligned}
& \text { energy }=\text { power } \times \text { time } \\
& =0.24 \times 60 \\
& =14.4 \mathrm{~J}
\end{aligned}
$$

- energy transferred to motor must be greater than this because the generator is only 90% efficiency

- efficiency $=\frac{\text { energy out }}{\text { energy in }} \times 100$
$90=\frac{14.4}{\text { energy in }} \times 100$
energy in $=\frac{14.4}{90} \times 100$
$=16 \mathrm{~J}$

- this energy is transferred by the falling mass.
gravitational potential energy $=$ mass \times gravity \times height
$16=0.3 \times 9.8 \times$ height
height $=5.4 \mathrm{~m}$
\end{tabular} \& \& \&

\hline 13.1 \& voltmeter \& \& 1 \& $$
\begin{gathered}
\mathrm{AO} 2 \\
4.2 .1 .3
\end{gathered}
$$

\hline 13.2 \& potential difference $=$ current \times resistance \& allow $\mathrm{V}=\mathrm{IR}$ \& 1 \& A01

\hline 13.3 \& $$
\begin{aligned}
\text { potential difference } & =15 \times 10 \\
& =1.5 \mathrm{~V}
\end{aligned}
$$ \& allow 1.5 with no substitution for two marks \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{AO} 1 \\
4.2 .1 .3
\end{gathered}
$$
\]

\hline
\end{tabular}

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
13.4	charge $=$ current \times time	allow $\mathrm{Q}=$ It	1	AO1
13.5	$\begin{aligned} & \text { charge }=0.15 \times 60 \\ & =9 \\ & \text { C/coulombs } \end{aligned}$	allow nine with no substitution for two marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.2.1.2 } \end{gathered}$
13.6	it would increase the potential difference has increased (but the clock resistance is the same)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.2 .1 .3 \end{gathered}$
14.1	before the air is pumped out the pressure of the air in the marshmallow pockets = the pressure of the air outside the marshmallow the particles of the air (inside and outside the marshmallow) collide with the (surface/material of the) marshmallow, producing a force, force $=$ pressure \times area initially the forces are the same when the teacher pumps the air out, the force/pressure exerted by the particles of the air on the outside is smaller than the force exerted by the particles inside, (so the marshmallow expands)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ 4.3 .3 .1 \\ 4.3 .3 .2 \end{gathered}$

AQA GCSE Physics

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
14.2	$\begin{aligned} & \text { initially: pressure } \times \text { volume }=101 \times 10^{3} \times 8 \times 10^{-6} \\ & =0.808(\text { Pa m } \\ & =\text { final pressure } \times \text { final volume } \\ & \text { final pressure }=\frac{0.808}{2.7 \times 10^{-5}} \\ & =2.99 \times 10^{4} \mathrm{~Pa} \\ & =29.9 \mathrm{kPa} . \\ & \text { change in pressure }=101-29.9 \\ & =71.1 \mathrm{kPa}(71100 \mathrm{~Pa}) \end{aligned}$		1 1 1 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.3.2 } \end{gathered}$

