AQA GCSE Physics Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	volume before = 72 cm ³		1	A01
	volume after = 97 cm ³			AO2
	difference in volume = volume of clay		1	4.3.1.1
	$= 97 \text{ cm}^3 - 72 \text{ cm}^3$		1	
	=15 cm ³			
01.2	resolution = $\frac{1}{2}$ smallest division		1	A01
	2		1	A02
	$=\frac{1}{2} \times 5 = 2.5 \text{ cm}^3$			
01.3	digital balance		1	AO2
01.4	density = $\frac{\text{mass}}{\text{volume}}$	allow $\rho = \frac{m}{v}$	1	A01
01.5	23.41	accept 1.56 or 1.6 with no	1	AO2
	density = $\frac{15}{15}$	working shown for two marks	1	4.3.1.1
	= 1.56 g/cm ³			
01.6	measure the length of each side (in cm)/measure the length, breadth and height		1	AO1
	cube the answer/multiply the length, breadth and height		1	4.3.1.1
02.1	vibrating		1	AO1
	potential		1	4.3.2.1
	moving fast		1	
	kinetic		1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
02.2	the internal energy changes from mainly potential	do not accept answers involving	1	A01
	to mainly kinetic/more kinetic	solids/liquids/gases	1	4.3.2.1
02.3	the particles in a gas are in random motion		1	AO1 4.3.2.1
03.1	20 °C		1	AO2
03.2	70 °C		1	AO2
03.3	energy transferred = power × time	allow E = P × t	1	A01
				4.3.2.3
03.4	energy = $1000 \times 2 \times 60$		1	AO2
	= 120 000 J		1	4.3.2.3
	energy transferred = mass × specific latent heat of vaporisation	allow E = mL	1	
	120 000 = mass × 365 000		1	
	$mass = \frac{120000}{10000}$		1	
	365000		1	
	= 0.33 kg			
03.5	an overestimate		1	AO2
	(the energy transferred to vaporise the water is lower because) some energy is		1	4.3.2.3
	transferred to the thermal energy store of the surroundings			
03.6	a line that starts at 20 °C		1	AO2
	steeper than the original line		1	
	becomes horizontal at 70 °C at about 2 minutes		1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
04.1	energy = power × time	allow E = P × t	1	A01
04.2	2 kW = 2000 W 2 minutes = 120 seconds energy = 2000 × 120 = 240 000 J		1 1 1 1	AO1 AO2 4.1.1.4 4.3.2.3
04.3	change in mass = 1.276 - 1.180 = 0.096 kg energy transferred = specific latent heat × change in mass 240 000 J = specific latent heat of vaporisation × 0.096 kg specific latent heat of vaporisation = $\frac{240000}{0.096}$ = 2 500 000 J/kg = 2500 kJ/kg	allow 2500 with no substitution for two marks allow E = mL	1 1 1 1 1	AO1 AO2
04.4	the energy transferred was heating the material of the kettle/air around it as well as vaporising the water a lower mass of water vaporised than should have been the case so the value calculated was bigger than the textbook value		1 1 1	AO2 4.3.2.3
05.1	the gas has been compressed/is exerting a big pressure on the inside of the container		1	AO1 4.3.3.2
05.2	the student has done work on the gas (so has transferred energy) so has increased the internal energy of the system (which produces an increase in temperature)		1 1	AO1/2 4.3.3.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.3	when the student does work, the particles move more quickly/energy is transferred to the particles		1	AO1 4.3.3.3
	the average speed/kinetic energy of the particles increases, so the temperature increases		1	
06.1	(when the student is in the shower) water evaporates to make water vapour the water vapour condenses when it comes in contact with the colder mirror and energy is transferred to the mirror		1 1 1	AO1 AO2 4.3.1.2
06.2	for converting all kJ to J, cm to m the mass of water that condenses = $\frac{\text{energy}}{\text{specificIatentheat of vaporisation}}$ = $\frac{730000}{2265000}$ = 0.322 kg mass = density × volume volume of water = $\frac{0.322}{1 \times 10^{-8}}$ = 0.000 322 volume = area x thickness thickness of water = $\frac{0.000322}{1 \times 10^{-4}}$ = 8.95×10 ⁻⁴ m		1 1 1 1 1	AO1 AO2 4.3.1.1 4.3.2.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
07.1	the particles in a solid are arranges in a regular pattern/array		1	AO2
	the particles in a gas are moving in all/random direction		1	
	the particles in a solid are vibrating about a fixed position		1	
	the particles in a gas are moving quickly		1	
07.2	the particles collide with the walls of the container		1	AO3
	each particle exerts a force on the wall		1	
	pressure is force per unit area		1	
	the total force of all the collisions of the particles per unit area is the pressure		1	
07.3	pressure on y-axis, temperature on x-axis		1	A01
	straight line with positive gradient		1	AO2
	that intercepts y-axis above zero (does not need to be extrapolated)		1	4.1.2.1
08.1	the steam is at a high temperature (and in the gas state)		1	AO1
	steam transfers latent heat energy to the milk (steam cools/changes to a liquid		1	AO2
	state and the temperature of the milk rises)			4.3.2.2
				4.3.2.3
08.2	convert 242 g to 0.242 kg, and 3.93 kJ/kg °C to 3930 J/kg °C		1	A01
	temperature difference = $70 - 20 = 50^{\circ}$ C			AO2
	energy required = mass × specific heat capacity × change in temperature	allow E = m c $\Delta \theta$		4.3.2.2
	$= 0.242 \times 3930 \times 50$	allow 47533 with no	1	
	= 47 553 J (≈ 48 000 J so about 48 kJ)	substitution for three marks	1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.3	convert 2260 kJ/kg to 2260 000 J/kg		1	AO2
	energy = mass × specific latent heat of vaporisation	allow E= mL	1	4.3.2.3
	47 553 = mass × 2 260 000			
	mass = $\frac{47553}{2}$		1	
	2260000		1	
	= 0.02 kg			
08.4	Assume that all the energy transferred to the milk to heat it comes from the		1	AO2
	change of state of the steam.			4.3.2.3
09.1	В		1	A01
	D		1	4.3.1.2
	the temperature isn't changing/doesn't change		1	
	even though the substance is being heated		1	
09.2	solid		1	A01
	it changes state twice/goes from solid to liquid, then liquid to gas		1	4.3.1.2
09.3	A		1	A01
				4.3.1.2
09.4	C		1	AO1
	E		1	4.3.1.2
10.1	volume = $(5)^3$		1	AO2
	= 125 cm ³		1	4.3.1.1

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.2	density =		1	A01
	volume			AO
	$1.5 = \frac{\text{mass}}{125}$		1	4.3.1.1
	$mass = 1.5 \times 125 cm^3$		1	
	= 187.5g		1	
10.3	sublimation		1	A01
				4.3.1.2
10.4	if the process is reversed, the material recovers its original properties		1	A01
				4.3.1.2
10.5	the internal energy of the gas is bigger than the internal energy of the solid		1	AO2
	the particles have more kinetic energy/are moving faster		1	4.3.1.2
11.1	one mark for correct symbol		2	A01
	one mark for correct label			4.2.1.1
11.2	(when they put the test tube into iced water) the temperature of the water		1	A01
	decreases			AO2
	the resistance of the thermistor increases		1	4.2.1.4
	the potential difference across the thermistor increases		1	
	V _{out} decreases		т	
	because the total potential difference across the thermistor and the resistor = 12 V at all times		1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
11.3	find the potential difference across the resistor by measuring V_{out}		1	AO1
	find potential difference across thermistor by subtracting V_{out} from 12 V			AO2
	use $\frac{\text{potentialdifference across the resistor}}{\text{potentialdifference across the thermistor}} = \frac{\text{resistanceof resistor}}{\text{resistanceof thermistor}}$ to		1	4.2.2
	find the resistance of the thermistor			
	use a graph/table of the resistance of the thermistor at different temperatures		1	
	to work out the temperature of the water.		1	
11.4	sensible suggestions e.g., the human body continually generates thermal energy, but the water in the test tube does not		1	AO3
12	Level 3: Well organised answer with descriptions of reasons for calculations.		5-6	AO1/1
	Equations for power, efficiency and gravitational potential energy used			AO2/1
	Level 2: Some relevant calculations, but descriptions lacking detail or missing, or		3-4	4.1.1.4
	parts of calculations/conversions incorrect.			4.1.1.2
	Level 1: Some relevant calculations completed, but unit conversions may be		1-2	
	missing, and no explanation of method.			
	No relevant comment.		0	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	Indicative content:			
	 calculate energy needed to be transferred to bulb: 			
	 energy = power × time 			
	= 0.24 × 60			
	= 14.4 J			
	• energy transferred to motor must be greater than this because the generator			
	is only 90% efficiency			
	$\circ \text{efficiency} = \frac{\text{energy out}}{\text{energy in}} \times 100$			
	$0 90 = \frac{14.4}{\text{energy in}} \times 100$			
	• energy in = $\frac{14.4}{90} \times 100$			
	○ = 16 J			
	 this energy is transferred by the falling mass. 			
	 gravitational potential energy = mass × gravity × height 			
	\circ 16 = 0.3 × 9.8 × height			
	o height = 5.4 m			
13.1	voltmeter		1	AO2 4.2.1.3
13.2	potential difference = current × resistance	allow V = IR	1	A01
13.3	potential difference = 15 × 10	allow 1.5 with no substitution	1	A01
	= 1.5 V	for two marks	1	4.2.1.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.4	charge = current × time	allow Q = It	1	A01
13.5	charge = 0.15 × 60 = 9 C/coulombs	allow nine with no substitution for two marks	1 1 1	AO1 AO2 4.2.1.2
13.6	it would increase the potential difference has increased (but the clock resistance is the same)		1 1	AO1 AO2 4.2.1.3
14.1	before the air is pumped out the pressure of the air in the marshmallow pockets = the pressure of the air outside the marshmallow the particles of the air (inside and outside the marshmallow) collide with the (surface/material of the) marshmallow, producing a force, force = pressure × area initially the forces are the same when the teacher pumps the air out, the force/pressure exerted by the particles of the air on the outside is smaller than the force exerted by the particles inside, (so the marshmallow expands)		1 1 1 1 1	AO2 AO3 4.3.3.1 4.3.3.2

AQA GCSE Physics Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
14.2	initially: pressure × volume = $101 \times 10^3 \times 8 \times 10^{-6}$		1	A01
	= 0.808 (Pa m ³)		1	4.3.3.2
	= final pressure × final volume			
	final pressure = $\frac{0.808}{2.7 \times 10^{-5}}$		1	
	$= 2.99 \times 10^4 \text{Pa}$		1	
	= 29.9 kPa.		1	
	change in pressure = 101 - 29.9		1	
	= 71.1 kPa (71 100 Pa)			