**Practice** answers



| Question | Answers                                                                                                                                                                                        | Extra information                                                                                                                                                             | Mark        | AO /<br>Specification<br>reference |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|
| 01.1     | A should be in the uppermost circle<br>V should be in the right hand circle<br>The resistor is between the cell and the voltmeter<br>The variable resistor is the lower-most circuit component | one mark for 'A' in correct place<br>one mark for 'V' in correct place<br>one mark for resistor labelled<br>correctly<br>one mark for variable resistor<br>labelled correctly | 1<br>1<br>1 | AO1<br>4.2.1.1                     |
| 01.2     | the rate of flow of charge/charge flowing per second                                                                                                                                           |                                                                                                                                                                               | 1           | AO1<br>4.2.1.2                     |
| 01.3     | resistance = $\frac{\text{potential difference}}{\text{current}}$ or potential difference = current x resistance                                                                               | allow V = IR or R = $\frac{V}{I}$                                                                                                                                             | 1           | AO1<br>4.2.1.3                     |
| 01.4     | $R = \frac{6}{0.3}$ $= 20$ $unit = \Omega$                                                                                                                                                     | accept 20 with no working for two calculation marks                                                                                                                           | 1<br>1<br>1 | AO2<br>4.2.1.3                     |
| 02.1     | circuits A and C are parallel circuits                                                                                                                                                         | no marks if more than one box ticked                                                                                                                                          | 1           | AO1<br>4.2.2                       |
| 02.2     | A, C<br>B, D<br>B, D                                                                                                                                                                           | in all cases, both letters<br>required for the mark<br>letters can be in either order                                                                                         | 1<br>1<br>1 | AO2<br>4.2.2                       |

## **Practice** answers



| Question | Answers                                                                         | Extra information | Mark | AO /<br>Specification<br>reference |
|----------|---------------------------------------------------------------------------------|-------------------|------|------------------------------------|
| 02.3     | no                                                                              |                   | 1    | AO2                                |
|          | the bulbs will be the same brightness                                           |                   | 1    | 4.2.2                              |
|          | because they are in a series circuit                                            |                   | 1    |                                    |
| 03       | Level 3: Correct diagrams with description of measurements (total current and   |                   | 5-6  | AO1                                |
|          | potential difference) to be taken in each circuit. Rearrangement of equation to |                   |      | 4.2.2                              |
|          | give an equation for resistance. Correct statement about relative magnitudes of |                   |      |                                    |
|          | equivalent resistances.                                                         |                   |      |                                    |
|          | Level 2: Diagrams or description of measurements (total current and potential   |                   | 3-4  |                                    |
|          | difference) to be taken in each circuit lacking one or two details              |                   |      |                                    |
|          | Evidence of use of equation involving current, potential difference, and        |                   |      |                                    |
|          | resistance. Correct statement about relative magnitudes of equivalent           |                   |      |                                    |
|          | resistances.                                                                    |                   |      |                                    |
|          | Level 1: One correct diagram. Either potential difference or current            |                   | 1-2  |                                    |
|          | measurement mentioned. Little or no evidence of use of equation. Little or no   |                   |      |                                    |
|          | statement about the relative magnitudes of the equivalent resistances.          |                   |      |                                    |
|          | No relevant comment.                                                            |                   | 0    |                                    |

**Practice** answers



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extra information | Mark   | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------------------------------|
|          | <ul> <li>Indicative content:</li> <li>two correct circuits drawn with an ammeter in each circuit in an appropriate place to measure the total current, with or without a voltmeter across the battery</li> <li>one circuit should be a parallel circuit with a bulb in each circuit, with an ammeter in the circuit closest to the cell</li> <li>the other circuit should be a single circuit with two bulbs and one ammeter</li> <li>you need to measure the total current in each circuit, and the potential difference of the supply.</li> <li>you use the equation potential difference = current × resistance</li> <li>rearrange to give resistance = potentialdifference to calculate the equivalent resistance of each circuit</li> </ul> |                   |        |                                    |
|          | the equivalent resistance of the series circuit is bigger than the equivalent resistance of the parallel circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |        |                                    |
| 04.1     | as the temperature increases, the resistance decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 1      | AO1<br>4.2.1.4                     |
| 04.2     | the reading on the voltmeter will not change<br>it is connected directly across the battery/there is only one component (other<br>than the battery)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1<br>1 | AO2<br>4.2.2                       |



| Questic | n Answers                                                                                     | Extra information              | Mark | AO /<br>Specification<br>reference |
|---------|-----------------------------------------------------------------------------------------------|--------------------------------|------|------------------------------------|
| 04.3    | the potential differences across resistors in a series circuit are in the same                |                                | 1    | AO2                                |
|         | proportion as the size of the resistances                                                     |                                | 1    | 4.2.2                              |
|         | there is 8 V out of the total 12 V across the thermistor, which is $\frac{2}{3}$ of the total |                                | 1    |                                    |
|         | so the resistance of the thermistor is 2 x 10 = 20 k $\Omega$                                 |                                | 1    |                                    |
|         | this happens when the resistance is very cold                                                 |                                | L    |                                    |
|         | there is 3 V out of the total 12 V across the thermistor, which is $\frac{1}{4}$              |                                | 1    |                                    |
|         | so the resistance of the thermistor is 3.3 k $\Omega$                                         |                                | 1    |                                    |
|         | this happens when the resistance is very hot                                                  |                                |      |                                    |
| 05.1    | potential difference = 6 - 4                                                                  | accept 2 V with no working for | 1    | AO2                                |
|         | = 2 V                                                                                         | two marks                      | 1    | 4.2.2                              |
| 05.2    | potential difference = current × resistance <b>or</b> V = IR                                  | accept 20 with no working      | 1    | AO1                                |
|         | 4 = 0.2 × resistance                                                                          | shown for three marks          | 1    | AO2                                |
|         | resistance = $\frac{4}{0.2}$                                                                  |                                |      | 4.2.1.2                            |
|         | = 20 Ω                                                                                        |                                |      |                                    |
|         |                                                                                               |                                |      |                                    |



| Question | Answers                                                                                                                                                                                                                                                                                                      | Extra information                                                                             | Mark                   | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|------------------------------------|
| 05.3     | $R = \frac{2}{0.2}$<br>= 10 \Omega<br>or<br>total resistance = $\frac{6}{0.2} = 30 \Omega$<br>so resistance of resistor = 30 - 20 = 10 \Omega                                                                                                                                                                |                                                                                               | 1<br>1<br>or<br>1<br>1 | AO2<br>4.2.2                       |
| 05.4     | decrease<br>adding a resistor in series increases the total resistance of the circuit so less<br>current will flow                                                                                                                                                                                           |                                                                                               | 1<br>1                 | AO2<br>4.2.2                       |
| 06.1     | component A                                                                                                                                                                                                                                                                                                  |                                                                                               | 1                      | AO2<br>4.2.1.4                     |
| 06.2     | evidence of reading current and potential difference from the graph e.g., current<br>= 0.5 A, potential difference = 5.0 V<br>potential difference = current × resistance<br>resistance = $\frac{\text{potential difference}}{\text{current}}$<br>= $\frac{5.0 \text{V}}{0.5 \text{A}}$<br>= 10 ( $\Omega$ ) | accept any correct pair of<br>readings<br>accept ten with no working<br>shown for three marks | 1<br>1<br>1            | AO1<br>AO2<br>4.2.1.2              |



| Question | Answers                                                                                                | Extra information                              | Mark | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|------|------------------------------------|
| 06.3     | as the potential difference increases the resistance of component A stays the                          | do not accept any answer                       | 1    | AO2                                |
|          | same<br>the ratio of all the potential difference and current readings stays the same = 10             | involving gradients of the lines               | 1    | 4.2.1.4                            |
|          | $(\Omega)$                                                                                             |                                                | 1    |                                    |
|          | as the potential difference increases, the resistance of component B increases                         |                                                |      |                                    |
|          | the ratio of the potential difference: current readings increases, from $\frac{1.0}{0.2}$ = 5 $\Omega$ |                                                | 1    |                                    |
|          | to $\frac{3.0}{0.4} = 7.5 \Omega$                                                                      |                                                |      |                                    |
| 06.4     | at 3.0 V, total current = 0.3 A + 0.4 A                                                                |                                                | 1    | AO2                                |
|          | = 0.7 A                                                                                                |                                                | 1    | 4.2.2                              |
| 06.5     | resistance = $\frac{V}{I}$                                                                             | accept 4.3 with no working shown for two marks | 1    |                                    |
|          | $=\frac{3}{0.7}$                                                                                       |                                                | 1    |                                    |
|          | =4.3 (Ω) $[=4.286(Ω)]$                                                                                 |                                                |      |                                    |
| 07.1     | negative                                                                                               |                                                | 1    | AO2<br>4.2.5.2                     |
| 07.2     | an arrow in a direction away from the sphere                                                           |                                                | 1    | AO2<br>4.2.5.2                     |
| 07.3     | (the force) decreases/gets smaller                                                                     |                                                | 1    | AO2                                |
|          |                                                                                                        |                                                |      | 4.2.5.1                            |



| Question | Answers                                                                          | Extra information               | Mark | AO /<br>Specification<br>reference |
|----------|----------------------------------------------------------------------------------|---------------------------------|------|------------------------------------|
| 07.4     | charge = current × time <b>or</b> Q = It                                         | student must show working for   | 1    | AO1                                |
|          | $4 \times 10^{-6}$ = current × 0.2                                               | full marks                      | 1    | AO2                                |
|          | current = $\frac{4 \times 10^{-6}}{10^{-6}}$                                     |                                 | 1    | 4.2.1.2                            |
|          | 0.2                                                                              |                                 | 1    |                                    |
|          | = 2×10 <sup>-5</sup> A                                                           |                                 |      |                                    |
| 08.1     | electron(s)                                                                      |                                 | 1    | AO1                                |
|          |                                                                                  |                                 |      | 4.2.5.1                            |
| 08.2     | negatively charged particles (electrons) are transferred from the jumper to the  |                                 | 1    | AO2                                |
|          | balloon                                                                          |                                 |      | 4.2.5.1                            |
|          | which leave a (net) negative charge on the balloon                               |                                 | 1    |                                    |
| 08.3     | yes                                                                              | all marks for this question are |      | AO2                                |
|          | because opposite charges attract                                                 | awarded for explanations,       | 1    | 4.2.5.2                            |
|          | and an attractive force keeps the balloon on the wall                            | rather than for the 'yes'/'no'  | 1    |                                    |
|          | or                                                                               | answer                          | or   |                                    |
|          | no                                                                               |                                 |      |                                    |
|          | the wall is neutral                                                              |                                 | 1    |                                    |
|          | but when the balloon is close to the wall it repels the electrons which leaves a |                                 | 1    |                                    |
|          | net positive charge on the surface                                               |                                 |      |                                    |
| 08.4     | the balloons will repel                                                          |                                 | 1    | AO1                                |
|          | they have the same charge on them/both are negatively charged                    |                                 | 1    | AO2                                |
|          | like/similar charges repel                                                       |                                 | 1    | 4.2.5.2                            |

**Practice** answers



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                             | Extra information                                                                                                                    | Mark                       | AO /<br>Specification<br>reference |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|
| 09.1     | charge = current × time or Q = It<br>$0.6 = 15 \times 10^{-3} \times time$<br>time = $\frac{0.6}{15 \times 10^{-3}}$<br>= 40 s                                                                                                                                                                                                                                                                                                                      | accept 40 with no working<br>shown for three marks<br>accept 0.04 (not converting<br>from mA) for one mark                           | 1<br>1<br>1                | AO1<br>AO2<br>4.2.1.2              |
| 09.2     | graph should show a smooth curve with resistance increasing sharply initially before beginning to gradually plateau                                                                                                                                                                                                                                                                                                                                 | One mark for a graph labelled<br>mass on x-axis, resistance on y-<br>axis<br>one mark for a curved shape<br>with decreasing gradient | 2                          | AO3<br>4.2.1.2                     |
| 09.3     | as the mass of salt increases the current increases<br>the potential difference is constant (6 V)<br>$R = \frac{V}{I}$ , so the resistance will decrease (as mass increases)<br>the current increases at a decreasing rate, so the resistance will decrease at a<br>decreasing rate<br>from 25 g to 30 g the resistance decreases from 400 $\Omega$ to 240 $\Omega$<br>from 75 g to 80 g the resistance decreases from 150 $\Omega$ to 146 $\Omega$ |                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1 | AO2<br>AO3<br>4.2.1.2              |

# **Practice** answers



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extra information                                                                                                                                      | Mark        | AO /<br>Specification<br>reference |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|
| 10.1     | graph should show that resistance initially drops sharply, but begins to gradually<br>plateau as light intensity increases<br>the curve should be a smooth arch showing a negative correlation                                                                                                                                                                                                                                                                                                                                                                                                                                            | one mark for plotting light<br>intensity on x-axis and<br>resistance on y-axis<br>one mark for correct units<br>one mark for correct shape of<br>graph | 3           | AO2<br>4.2.1.4                     |
| 10.2     | sensible suggestion e.g., street lights, security lights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        | 1           | AO2<br>4.2.1.4                     |
| 10.3     | description of how it is used<br>appropriate circuit diagram<br>explanation of why it is needed<br><b>for example:</b><br>turning the lights on in a house when it gets dark outside<br>connect up the light dependent resistor in a circuit with an LDR, a resistor and a<br>battery<br>circuit diagram with labelled components<br>use the output potential difference across the LDR or the resistor to switch on<br>the lights<br>as the light level changes, the changing resistance produces a changing potential<br>difference<br>which can be used to turn on the lights when the potential difference reaches a<br>certain level |                                                                                                                                                        | 2<br>1<br>2 | AO2                                |

### **Practice** answers



| Question | Answers                                                                                                                                                | Extra information                                                                                                                                                                                                                    | Mark        | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|
| 11.1     | points should be plotted at the following co-ordinates:<br>(5, 1.5), (10, 3.8), (15, 4.6), (20, 5.9), (25, 7.8)<br>line of best fit should be straight | three or four points plotted<br>correctly for one mark<br>all points plotted correctly for<br>two marks<br>one mark for appropriate scales<br>on correctly labelled axes<br>one mark for plotting an<br>appropriate line of best fit | 4           | AO2<br>4.2.1.3                     |
| 11.2     | independent variable = length<br>dependent variable = resistance<br>control variable = type of metal/diameter of wire/temperature of wire              |                                                                                                                                                                                                                                      | 1<br>1<br>1 | AO3<br>4.2.1.3                     |
| 11.3     | 6.8 (Ω)                                                                                                                                                | accept values between 6.5 and 7.3 ( $\Omega$ )                                                                                                                                                                                       | 1           | AO2<br>4.2.1.3                     |
| 11.4     | take repeat measurements <b>and</b> calculate/plot the average/mean of repeat measurements                                                             |                                                                                                                                                                                                                                      | 1           | AO3<br>4.2.1.3                     |
| 11.5     | both students A and B are correct<br>the line is straight (so is linear)<br>and foes through (0,0) (so it is directly proportional)                    |                                                                                                                                                                                                                                      | 1<br>1<br>1 | AO3<br>4.2.1.3                     |

Practice answers



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extra information                                                            | Mark        | AO /<br>Specification<br>reference |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|------------------------------------|
| 12.1     | <ul> <li>energy in the kinetic energy store</li> <li>is transferred to a gravitational potential energy store as the ball moves</li> <li>upwards.</li> <li>as the ball moves through the air some energy is transferred to the thermal</li> <li>energy store of the surroundings</li> <li>as the ball moves down energy is transferred from a gravitational potential</li> <li>energy store to a kinetic energy store</li> <li>some of this energy is transferred to the thermal energy store of the hand</li> </ul> |                                                                              | 1<br>1<br>1 | AO2<br>4.1.1.1                     |
| 12.2     | gravitational potential energy = mass × gravity × (change in) height                                                                                                                                                                                                                                                                                                                                                                                                                                                 | allow gpe = mgh                                                              | 1           | AO1<br>4.1.1.2                     |
| 12.3     | $0.4 = 0.1 \times 9.8 \times \text{change in height}$<br>change in height = $\frac{0.4}{0.98}$<br>= 0.41 m                                                                                                                                                                                                                                                                                                                                                                                                           | accept 0.4 with no working shown for three marks                             | 1<br>1<br>1 | AO2<br>4.1.1.2                     |
| 13.1     | efficiency = $\frac{\text{useful energy transferred}}{\text{total energy transferred}} \times 100$<br>= $\frac{4000 \times 1000 \times 100}{10000 \times 1000} \times 100$<br>= 40 %                                                                                                                                                                                                                                                                                                                                 | accept 40% with no working<br>shown for three marks<br>accept 0.4 for 1 mark | 1<br>1<br>1 | AO1<br>AO2<br>4.1.2.2              |

**Practice** answers



| Question | Answers                                                                                                                                                                                                                        | Extra information                                                                                                                              | Mark             | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|
| 13.2     | efficiency of vehicle B is 2 × 40% = 80% or 0.8<br>$0.8 = \frac{6000 \times 1000}{\text{total energy transferred}}$ $\text{total energy transferred} = \frac{6000 \times 1000}{0.8}$ $= 7500\ 000\ \text{J} = 7500\ \text{kJ}$ | accept 7500000 J with no<br>working for three marks                                                                                            | 1<br>1<br>1      | AO2<br>4.1.2.2                     |
| 13.3     | power = $\frac{\text{useful energy transferred}}{\text{time taken}}$<br>= $\frac{6000 \times 1000}{2 \times 3600}$<br>= 833 W<br>= 830 W to two significant figures                                                            | accept 833 with no working<br>shown for two marks                                                                                              | 1<br>1<br>1<br>1 | AO1<br>AO2<br>4.1.1.4              |
| 14.1     | <ul> <li>A – the graph for a resistor with a small resistance</li> <li>B – the graph for a resistor with a large resistance</li> <li>C – the graph for a filament lamp</li> </ul>                                              | one mark for two lines correct<br>two marks for all lines correct                                                                              | 2                | AO1<br>4.2.1.4                     |
| 14.2     | while potential difference is negative, current should be 0 once potential difference becomes positive, current should increase sharply                                                                                        | one mark for current with<br>positive potential difference<br>one mark for approximately<br>zero current with negative<br>potential difference | 2                | AO1<br>4.2.1.4                     |



| Question | Answers                                                                                                                     | Extra information | Mark | AO /<br>Specification<br>reference |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|------|------------------------------------|
| 14.3     | none of them will light up                                                                                                  |                   | 1    | AO2                                |
|          | light emitting diode X is in the reverse direction/cannot allow current from positive to negative terminals of the battery. |                   | 1    | 4.2.1.4                            |