AQA GCSE Physics

Practice answers

Question	Answers	Extra information	Mark	\qquad
01.1	the potential difference of the mains electricity in the UK is: about 230 V the frequency of mains electricity in the UK is: 50 Hz the mains supply in the UK produces a current that is: alternating		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.2 .3 .1 \end{gathered}$
01.2	earth or neutral earth; neutral in any order live; neutral in any order		$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.2 .3 .1 \end{gathered}$
01.3	if the casing on an appliance becomes live, the earth wire conducts the current safely to earth	do not accept 'for safety' do not accept 'to protect the user'	1	$\begin{gathered} \text { AO1 } \\ 4.2 .3 .1 \end{gathered}$
02.1	$\begin{aligned} & \text { power }=\text { potential difference } \times \text { current or } \mathrm{P}=\mathrm{I} \times \mathrm{V} \\ & =6 \mathrm{~V} \times 1.5 \mathrm{~A} \\ & (=9 \mathrm{~W}) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$
02.2	$\text { power }=\frac{\text { energy }}{\text { time }}$		1	$\begin{gathered} \mathrm{AO1} \\ \text { 4.1.1.4 } \end{gathered}$
02.3	$\begin{aligned} & 9=\frac{\text { energy }}{30} \\ & \text { energy }=9 \times 30 \\ & =270(\mathrm{~J}) \end{aligned}$	accept 270 with no working for three marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.4.2 } \end{gathered}$
02.4	both devices transfer the same amount of energy		1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.2.4.2 } \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
03.1	a fault can be caused by the live wire touching the case of the fan the earth wire is connected to the case providing a (low resistance) path to 'earth' so the current flows through the earth wire and not through the person touching the case a large current flows, so the fuse melts so the current stops flowing		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.2 .3 .2 \end{gathered}$
03.2	make the case of the fan out of plastic/non-conducting material if the live wire touches the case the current will not travel through the case to the person		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.2 .3 .2 \end{gathered}$
03.3	$\begin{aligned} & \text { power }=\text { potential difference } \times \text { current } \\ & =230 \times 4.5 \\ & =1035 \mathrm{~W} \\ & =1000 \mathrm{~W} \text { (to two significant figures) } \end{aligned}$	accept 1000 W with no working for two marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO} 2 \\ 4.2 .4 .1 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
03.4	$\begin{aligned} & \text { power }=\text { current }{ }^{2} \times \text { resistance } \\ & \text { energy }=\text { power } \times \text { time } \\ & \text { energy }=\text { current }{ }^{2} \times \text { resistance } \times \text { time } \\ & 5.4=5^{2} \times \text { resistance } \times 0.63 \\ & \text { resistance }=\frac{5.4}{\left(5^{2} \times 0.63\right)} \\ & =0.3428 \\ & =0.34 \Omega \text { (to two significant figures) } \\ & \text { or } \\ & P=\frac{E}{t} \text { and } P=I^{2} \times R \\ & \left(P=\frac{5.4}{0.63}\right)=8.57 \text { W } \\ & \left(R=\frac{P}{1^{2}}\right)=\frac{8.57}{5}==0.3428 \\ & R=0.34 \Omega \text { (to two significant figures) } \end{aligned}$		1 1 1 1 or 1 1 1 1	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$
04.1	a transformer changes the potential difference/steps a potential difference up or down		1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.3 } \end{gathered}$
04.2	Level 3: Detailed explanation of why the National Grid uses a higher potential difference. Calculations of the current in each wire and of power loss in each wire		5-6	$\begin{gathered} \text { AO3 } \\ \text { 4.2.4.3 } \end{gathered}$
	Level 2: Explanation of why the National Grid uses a higher potential difference. Calculation of the current in each wire or an attempt at calculation of power loss in each wire		3-4	

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
	Level 1: Explanation of why the National Grid uses a higher potential difference. Calculation of the current in each wire or an attempt at calculation of power loss in each wire.		1-2	
	No relevant comment.		0	
	Indicative content: - transmitting power at a higher potential difference means that the current is smaller - the wires have a resistance, so they will get hot - so there is less energy transferred to the thermal store of the surroundings - at a power of $80 \times 10^{6} \mathrm{~W}$ and a potential difference of 400000 V , the current $\text { in the wire is: current }=\frac{\text { power }}{\text { potentialdifference }}=\frac{80 \times 10^{6}}{400000}=200 \mathrm{~A}$ - power loss is: $P=I^{2} \times R=200^{2} \times 4=1.6 \times 10^{5} \mathrm{~W}$ - at a power of $80 \times 10^{6} \mathrm{~W}$ and a potential difference of 4000 V the current in $\text { the wire is: current }=\frac{\text { power }}{\text { potentialdifference }}=\frac{80 \times 10^{6}}{4000}=20000 \mathrm{~A}$ power loss is: $P=I^{2} \times R=(20000)^{2} \times 4=1.6 \times 10^{9} \mathrm{~W}$			
05.1	power $=$ current \times potential difference	accept symbol equation $\mathrm{P}=\mathrm{V} \times \mathrm{l}$	1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1.4 } \end{gathered}$

AQA GCSE Physics

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	$\begin{aligned} & \text { potential difference of the mains }=230 \mathrm{~V} \\ & \text { power }=2 \mathrm{~kW}=2000 \mathrm{~W} \\ & 2000=\text { current } \times 230 \\ & \text { current }=\frac{2000}{230} \\ & =8.69 \mathrm{~A} \\ & =8.7 \mathrm{~A} \text { (to two significant figures) } \end{aligned}$	accept 8.2 with no working for the four calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.2 .4 .2 \end{gathered}$
05.3	potential difference $=$ current \times resistance	accept V = IR	1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.3 } \end{gathered}$
05.4	$\begin{aligned} & 230=8.69 \times \text { resistance } \\ & \text { resistance }=\frac{230}{8.69} \\ & =26.47 \Omega \\ & =26 \Omega \text { (to two significant figures) } \\ & \text { or } \\ & \text { power }=\text { current }^{2} \times \text { resistance } \\ & 2000=(8.69)^{2} \times \text { resistance } \\ & \text { resistance }=\frac{2000}{(8.69)^{2}} \\ & =26.48 \Omega \\ & =26 \Omega \text { (to two significant figures) } \end{aligned}$	allow $26.4=26 \Omega$ if 8.7 A used allow $26.4=26 \Omega$ if 8.7 A used	1 1 1 1 or 1 1 1 1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.2.1.3 } \\ \text { 4.2.4.1 } \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
05.5	energy transferred by kettle $=$ power \times time	accept $\mathrm{E}=\mathrm{Pt}$	1	$\begin{gathered} \mathrm{AO} 1 \\ 4.2 .4 .2 \end{gathered}$
05.6	$\begin{aligned} & E=2000 \times 2 \times 60 \\ & =240000 \mathrm{~J} \\ & \text { for toaster: } \\ & 240000=1200 \times \text { time } \\ & \text { time }=\frac{240000}{1200} \\ & =200 \text { seconds } \\ & =3 \text { minutes } 20 \text { seconds } . \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
05.7	yes they both transfer energy from a chemical/nuclear energy store (in the power station) to the thermal energy store (of the surroundings) by an electric current	no marks for 'yes'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.2.4.2 } \end{gathered}$
06.1	2000 W means 2000 joules of energy are transferred per second/unit time		1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.2 } \end{gathered}$
06.2	230 V means 230 joules of energy are transferred by each coulomb of charge (that flows in the circuit)		1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.2 } \end{gathered}$
06.3	energy $=$ power \times time	accept symbol equation $\mathrm{E}=\mathrm{P} \times \mathrm{t}$	1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.2 } \end{gathered}$
06.4	$\begin{aligned} & E=2000 \times 5 \times 60 \\ & =600000 \mathrm{~J} \end{aligned}$	accept 600000 with no working for two marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.4.2 } \end{gathered}$

AQA GCSE Physics

AQA GCSE Physics

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.1	230 V for all appliances this is the potential difference of the mains		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.2 .3 .1 \\ 4.2 .4 .1 \end{gathered}$
08.2	thermal (energy store)		1	$\begin{gathered} \mathrm{AO} \\ 4.2 .3 .1 \\ 4.2 .4 .1 \end{gathered}$
08.3	iron \rightarrow hairdryer \rightarrow toaster The current is proportional to the power if the potential difference is constant or $I=\frac{P}{V}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$
08.4	$\begin{aligned} & 2000=8.7^{2} \times \text { resistance } \\ & \text { resistance }=\frac{2000}{8.7^{2}} \\ & =26.4 \\ & =26 \Omega \text { (to two significant figures) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$
09.1	the energy from the Sun will not run out (in the immediate future)		1	$\begin{aligned} & \text { AO1 } \\ & \text { 4.1.3 } \end{aligned}$
09.2	$4 \times 10^{26} \mathrm{~W}$		1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.2.4.2 } \end{gathered}$
09.3	$\begin{aligned} & \text { energy per year }=\text { power } \times \text { time } \\ & =500 \times 3.1 \times 10^{7} \\ & =1.55 \times 10^{10} \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.2 .4 .2 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	AO / Specification reference
09.4	$\begin{aligned} & \text { area needed }=\frac{7 \times 10^{18}}{1.55 \times 10^{10}} \\ & =4.5 \times 10^{8} \mathrm{~m}^{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & \text { 4.1.3 } \end{aligned}$
10.1	$\begin{aligned} & \left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{ke}^{2}\right) \\ & =0.5 \times 500 \times 0.01^{2} \\ & =0.025 \mathrm{~J} \end{aligned}$	accept 0.025 (J) with no working	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1.2 } \end{gathered}$
10.2	at the top of the first bounce there is more energy in the gravitational potential energy store at the top of the second bounce the energy has been transferred to a gravitational potential energy store and the thermal energy store of the surroundings there is less energy in the gravitational potential energy store, so the second bounce is not so high		1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.1.1.1 } \\ 4.1 .1 .2 \end{gathered}$
10.3	energy is transferred by forces/mechanically and by heating		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.1.1.1 } \end{gathered}$
11.1	the National Grid		1	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.3 } \end{gathered}$
11.2	both transformers change the potential difference the transformer near the power station/transformer 1 is a step-up transformer/increases the potential difference the transformer near the house/transformer 2 is a step-down transformer/decreases the potential difference		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { A01 } \\ \text { 4.2.4.3 } \end{gathered}$

AQA GCSE Physics

Practice answers

Question	Answers	Extra information	Mark	\qquad
11.3	(the energy is transferred at a high potential difference so) the current is small so the energy/power/heat lost is small		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.2.4.3 } \end{gathered}$
12.1	$\begin{aligned} & \text { power }=\text { potential difference } \times \text { current } \\ & 9000=230 \times \text { current } \\ & \text { oven current }=\frac{9000}{230} \\ & =39 \mathrm{~A} \end{aligned}$		1 1 1	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$
12.2	$\begin{aligned} & \text { power }=\text { potential difference } \times \text { current } \\ & 2000=230 \times \text { current } \\ & \text { toaster current }=\frac{2000}{230} \\ & =8.7 \mathrm{~A} \end{aligned}$ difference between oven and toaster $=\frac{39}{8.7}$ $=4.48$ the current in the oven is over 4 times bigger		1 1 1 1	$\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.2.4.1 } \end{gathered}$
12.3	the current is very large, so the heating effect is very big the wire needs to be thicker so that there is less resistance and so less heating in the wire/the wire does not melt		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.2 .4 .1 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
12.4	there is an earth wire connected to the casing of an appliance through which current flows if the casing becomes live/connected to the live wire		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.2 .3 .2 \end{gathered}$
13.1	as the light intensity increases, the resistance decreases at a decreasing rate		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.1.4 } \end{gathered}$
13.2	the resistance of B also decreases with increased light intensity but after light intensity reaches 30 lux, resistance of B is constant whereas the resistance of A continues to go down		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ 4.2 .1 .4 \end{gathered}$
13.3	when the light level is 13 lux, the resistance of A is about $40 \mathrm{k} \Omega$ either: the total resistance $=\left(40 \times 10^{3}\right)+\left(100 \times 10^{3}\right)=140 \times 10^{3} \Omega$ current in circuit $=\frac{V}{R}=\frac{6}{140 \times 10^{8}}=4.28 \times 10^{-5} \mathrm{~A}$ so potential difference across the light dependent resistor $V=I R=\left(4.28 \times 10^{-5}\right) \times\left(40 \times 10^{3}\right)=1.7 V$ so the potential difference across the resistor $\mathrm{V}_{\text {out }}=6-1.7=4.3 \mathrm{~V}$ or: $\begin{aligned} & V=\left(\frac{40 \times 10^{8}}{\left[100 \times 10^{8}+40 \times 10^{8}\right]}\right) \times 6 \\ & =1.7 \mathrm{~V} \end{aligned}$ so the potential difference across the resistor $\mathrm{V}_{\text {out }}=6-1.7=4.3 \mathrm{~V}$		1 either 1 1 1 or 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { A02 } \\ 4.2 .1 .3 \\ 4.2 .1 .4 \\ 4.2 .2 \end{gathered}$

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
13.4	light dependent resistor A for light dependent resistor B, the lowest value of the resistance of light dependent resistor B is $40 \mathrm{k} \Omega$ so the lowest potential difference across the light dependent resistor is 1.7 V so the maximum potential difference of $\mathrm{V}_{\text {out }}$ is 4.3 V (because they add up to 6 V) to get a potential difference that is higher than 5 V , you need the potential difference across the light dependent resistor to be lower (than 1 V) so you need a light dependent resistor that has a resistance that can go lower than $40 \mathrm{k} \Omega$		1	AO1
			1	$\mathrm{AO} 2$
			1	4.2.1.4
			1	
			1	
			1	
14	Level 3: Calculations of power generated in each bulb in each circuit. The link between power and brightness is explicit and the statement about brightness is correct.	synoptic question involving ideas from the previous chapter	5-6	AO1 AO2 4.2.2 4.2.4.1
	Level 2: Calculations of currents in circuits and a comment linking current and resistance to power. Statements about brightness that follow from previous reasoning.		3-4	
	Level 1: Recognition that power depends on current and potential difference/resistance. A general statement that bulbs are brighter in parallel/less bright in series		1-2	
	No relevant comment.		0	

AQA GCSE Physics

Question	Answers	Extra information	Mark	\qquad
	Indicative content: - the brightness of the bulb depends on the power generated in it, $P=I^{2} R$ - in series, the current through each bulb is the same current $=\frac{\text { potentialdifference }}{\text { total resistance }}=\frac{12}{15}=0.8 \mathrm{~A}$ the 10Ω lamp will have a power of $0.8^{2} \times 10=6.4 \mathrm{~W}$ the 5Ω lamp will have a power of $0.8^{2} \times 5=3.2 \mathrm{~W}$ the 10Ω lamp will be brighter. - in parallel the potential difference across each bulb is the same, 12 V current through the 5Ω lamp $=\frac{\text { potentialdifference }}{\text { total resistance }}=\frac{12}{5}=2.4 \mathrm{~A}$ current through the 10Ω lamp will be 1.2 A (as the resistance is double, current will be half) the 10Ω lamp will have a power of $1.2^{2} \times 10=14.4 \mathrm{~W}$ the 5Ω lamp will have a power of $2.4^{2} \times 5=28.8 \mathrm{~W}$ the 5Ω lamp will be brighter			

