

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	the potential difference of the mains electricity in the UK is: about 230 V		1	AO1
	the frequency of mains electricity in the UK is: 50 Hz the mains supply in the UK produces a current that is: alternating		1 1	4.2.3.1
24.2	earth or neutral			101
01.2	earth; neutral in any order		1 2	AO1
	live; neutral in any order		2	4.2.3.1
01.3	if the casing on an appliance becomes live, the earth wire conducts the current	do not accept 'for safety'	1	AO1
	safely to earth	do not accept 'to protect the user'		4.2.3.1
02.1	power = potential difference × current or P = I x V		1	AO1
	= 6 V × 1.5 A (= 9 W)		1	AO2
	(= 9 W)			4.2.4.1
02.2	power = energy		1	AO1
	time			4.1.1.4
02.3	9 = energy	accept 270 with no working for	1	AO2
	30	three marks	1	4.2.4.2
	energy = 9 × 30		1	
	= 270 (J)			
02.4	both devices transfer the same amount of energy		1	AO2
				4.2.4.2

Question	Answers	Extra information	Mark	AO / Specification reference
03.1	a fault can be caused by the live wire touching the case of the fan the earth wire is connected to the case providing a (low resistance) path to 'earth' so the current flows through the earth wire and not through the person touching the case a large current flows, so the fuse melts so the current stops flowing		1 1 1 1	AO1 AO2 4.2.3.2
03.2	make the case of the fan out of plastic/non-conducting material if the live wire touches the case the current will not travel through the case to the person		1 1	AO1 AO2 4.2.3.2
03.3	power = potential difference × current = 230 × 4.5 = 1035 W = 1000 W (to two significant figures)	accept 1000 W with no working for two marks	1	AO1 AO2 4.2.4.1

Question	Answers	Extra information	Mark	AO / Specification reference
03.4	power = current ² × resistance		1	AO1
	energy = power × time			AO2
	energy = current ² × resistance × time			4.2.4.1
	$5.4 = 5^2 \times \text{resistance} \times 0.63$		1	7.2.7.1
	$resistance = \frac{5.4}{(5^2 \times 0.63)}$		1	
	$(5^2 \times 0.63)$		1	
	= 0.3428			
	= 0.34Ω (to two significant figures)		or	
	or		1	
	$P = \frac{E}{t} \text{ and } P = I^2 \times R$		1	
	t t		1	
	$\left(P = \frac{5.4}{0.63}\right) = 8.57 \text{ W}$ $\left(R = \frac{P}{I^2}\right) = \frac{8.57}{5} = 0.3428$		1	
	R = 0.34 Ω (to two significant figures)			
04.1	a transformer changes the potential difference/steps a potential difference up		1	AO1
	or down			4.2.4.3
04.2			- .	
04.2	Level 3: Detailed explanation of why the National Grid uses a higher potential		5-6	AO3
	difference. Calculations of the current in each wire and of power loss in each wire			4.2.4.3
	Level 2 : Explanation of why the National Grid uses a higher potential difference.		3-4	
	Calculation of the current in each wire or an attempt at calculation of power loss in each wire			

Question	Answers	Extra information	Mark	AO / Specification reference
	Level 1: Explanation of why the National Grid uses a higher potential difference. Calculation of the current in each wire or an attempt at calculation of power loss in each wire.		1-2	
	No relevant comment.		0	
	Indicative content:			
	 transmitting power at a higher potential difference means that the current is smaller 			
	 the wires have a resistance, so they will get hot 			
	 so there is less energy transferred to the thermal store of the surroundings 			
	• at a power of 80×10^6 W and a potential difference of 400 000V, the current			
	in the wire is: current = $\frac{\text{power}}{\text{potential difference}} = \frac{80 \times 10^6}{400000} = 200 \text{ A}$			
	o power loss is: $P = I^2 \times R = 200^2 \times 4 = 1.6 \times 10^5 \text{ W}$			
	 at a power of 80×10⁶ W and a potential difference of 4000 V the current in 			
	the wire is: current = $\frac{\text{power}}{\text{potential difference}} = \frac{80 \times 10^6}{4000} = 20000 \text{ A}$			
	power loss is: $P = I^2 \times R = (20\ 000)^2 \times 4 = 1.6 \times 10^9 \text{ W}$			
05.1	power = current × potential difference	accept symbol equation P = V × I	1	AO1
				4.1.1.4

Answers	Extra information	Mark	AO / Specification reference
potential difference of the mains = 230 V power = 2 kW = 2000 W 2000 = current \times 230 current = $\frac{2000}{230}$ = 8.69 A = 8.7 A (to two significant figures)	accept 8.2 with no working for the four calculation marks	1 1 1 1 1	AO1 AO2 4.2.4.2
potential difference = current × resistance	accept V = IR	1	AO1 4.2.1.3
$230 = 8.69 \times \text{resistance}$ $\text{resistance} = \frac{230}{8.69}$ $= 26.47 \Omega$ $= 26 \Omega \text{ (to two significant figures)}$	allow 26.4 = 26 Ω if 8.7A used	1 1 1 1	AO2 4.2.1.3 4.2.4.1
or power = current ² × resistance 2000 = $(8.69)^2$ × resistance resistance = $\frac{2000}{(8.69)^2}$ = 26.48 Ω	allow 26.4 = 26 Ω if 8.7A used	or 1 1 1 1	
	potential difference of the mains = 230 V power = 2 kW = 2000 W 2000 = current × 230 $current = \frac{2000}{230} $ = 8.69 A = 8.7 A (to two significant figures) potential difference = current × resistance $230 = 8.69 \times resistance $ $resistance = \frac{230}{8.69} $ = 26.47 Ω = 26 Ω (to two significant figures) or $resistance = \frac{2000}{(8.69)^2} \times resistance $ $resistance = \frac{2000}{(8.69)^2}$	potential difference of the mains = 230 V power = 2 kW = 2000 W 2000 = current × 230 current = $\frac{2000}{230}$ = 8.69 A = 8.7 A (to two significant figures) potential difference = current × resistance resistance = $\frac{230}{8.69}$ = 26.47 Ω = 26 Ω (to two significant figures) allow 26.4 = 26 Ω if 8.7A used Ω if 8.7A used Ω = 26.48 Ω	potential difference of the mains = 230 V power = 2 kW = 2000 W 2000 = current × 230 current = $\frac{2000}{230}$ = 8.69 A = 8.7 A (to two significant figures) accept V = IR 1 1 230 = 8.69 × resistance resistance = $\frac{230}{8.69}$ = 26.47 Ω = 26 Ω (to two significant figures) allow 26.4 = 26 Ω if 8.7A used or resistance = $\frac{2000}{(8.69)^2}$ = 26.48 Ω

Question	Answers	Extra information	Mark	AO / Specification reference
05.5	energy transferred by kettle = power × time	accept E = Pt	1	A01
				4.2.4.2
05.6	$E = 2000 \times 2 \times 60$		1	
	= 240 000 J		1	
	for toaster:			
	240 000 = 1200 × time		1	
	time = $\frac{240000}{1200}$		1	
	1200		1	
	= 200 seconds		1	
	= 3 minutes 20 seconds.			
05.7	yes	no marks for 'yes'		AO1
	they both transfer energy from a chemical/nuclear energy store (in the power		1	AO2
	station) to the thermal energy store (of the surroundings)		1	4.2.4.2
	by an electric current			
06.1	2000 W means 2000 joules of energy are transferred per second/unit time		1	AO1
				4.2.4.2
06.2	230 V means 230 joules of energy are transferred by each coulomb of charge		1	AO1
	(that flows in the circuit)			4.2.4.2
06.3	energy = power × time	accept symbol equation E = P × t	1	AO1
	<u> </u>	, , ,		4.2.4.2
06.4	E = 2000 x 5 x 60	accept 600 000 with no working	1	AO2
	= 600 000 J	for two marks	1	4.2.4.2

Question	Answers			Extra information	Mark	AO / Specification reference		
06.5	energy = ch	arge × potential d		accept symbol equation E = Q × V	1	AO1 4.2.4.2		
06.6	charge = 60	charge = $\frac{600000}{230}$			accept 2609 with no working for three marks	1	AO2 4.2.4.2	
07.1	Metal rod	Time for nail to fall off in s	Time for nail to fall off in s	Time for nail to fall off in s	Mean time for nail to fall off in s	evidence of metal rod as independent variable in the first column evidence of repeat readings evidence of calculation of mean	1 1 1	AO2 AO3 4.1.3
07.2	Bunsen kamountsize/mat	 distance of a nail from end of rod Bunsen burner, type/air hole position/position on rod amount of wax on nail 			one mark for each correct point up to a maximum of two marks	2	AO3 4.1.2.1	
07.3		variables are diffic		uced			1 1	AO3 4.1.2.1
07.4		ent method for wo	_		e rod has gotten hot		1	AO3 4.1.2.1

Question	Answers	Extra information	Mark	AO / Specification reference
08.1	230 V for all appliances		1	AO1
	this is the potential difference of the mains		1	4.2.3.1 4.2.4.1
08.2	thermal (energy store)		1	AO1
				4.2.3.1 4.2.4.1
08.3	$iron \rightarrow hairdryer \rightarrow toaster$		1	AO2
	The current is proportional to the power if the potential difference is constant or		1	4.2.4.1
	$I = \frac{P}{V}$			
08.4	$2000 = 8.7^2 \times resistance$		1	AO2
	$resistance = \frac{2000}{8.7^2}$		1	4.2.4.1
	= 26.4		1	
	= 26 Ω (to two significant figures)		1	
09.1	the energy from the Sun will not run out (in the immediate future)		1	AO1
				4.1.3
09.2	4×10 ²⁶ W		1	AO2
				4.2.4.2
09.3	energy per year = power × time			AO2
	$= 500 \times 3.1 \times 10^{7}$ $= 1.55 \times 10^{10} \mathrm{J}$		1	4.2.4.2
	= 1.55×10 J		1	

Question	Answers	Extra information	Mark	AO / Specification reference
09.4	area needed = $\frac{7 \times 10^{18}}{10^{18}}$		1	AO2
	$ 1.55 \times 10^{10} $ = 4.5×10 ⁸ m ²		1	4.1.3
10.1	$(E_e = 0.5ke^2)$	accept 0.025 (J) with no working		AO2
	$= 0.5 \times 500 \times 0.01^{2}$		1	4.1.1.2
	= 0.025 J		1	
10.2	at the top of the first bounce there is more energy in the gravitational potential		1	AO1
	energy store at the top of the second bounce the energy has been transferred to a		4	AO2
	gravitational potential energy store and the thermal energy store of the		1	4.1.1.1
	surroundings			4.1.1.2
	there is less energy in the gravitational potential energy store, so the second bounce is not so high		1	
10.3	energy is transferred by forces/mechanically		1	AO1
	and by heating		1	AO2
				4.1.1.1
11.1	the National Grid		1	AO1
				4.2.4.3
11.2	both transformers change the potential difference		1	AO1
	the transformer near the power station/transformer 1 is a step-up transformer/increases the potential difference		1	4.2.4.3
	the transformer near the house/transformer 2 is a step-down transformer/decreases the potential difference		1	

Question	Answers	Extra information	Mark	AO / Specification reference
11.3	(the energy is transferred at a high potential difference so) the current is small		1	AO1
	so the energy/power/heat lost is small		1	4.2.4.3
12.1	power = potential difference × current		_	AO1
	9000 = 230 × current		1	AO2
	oven current = $\frac{9000}{230}$		1	4.2.4.1
	= 39 A		1	
12.2	power = potential difference × current			AO1
	2000 = 230 × current		1	AO2
	toaster current = $\frac{2000}{330}$		1	AO3
	230 = 8.7 A		-	4.2.4.1
	difference between oven and toaster = $\frac{39}{8.7}$		1	
			1	
	= 4.48			
	the current in the oven is over 4 times bigger		1	
12.3	the current is very large, so the heating effect is very big		1	AO2
	the wire needs to be thicker so that there is less resistance and so less heating in the wire/the wire does not melt		1	4.2.4.1

Question	Answers	Extra information	Mark	AO / Specification reference
12.4	there is an earth wire connected to the casing of an appliance		1	AO1
	through which current flows if the casing becomes live/connected to the live wire		1	AO2
	WITC			4.2.3.2
13.1	as the light intensity increases, the resistance decreases		1	AO2
	at a decreasing rate		1	4.2.1.4
13.2	the resistance of B also decreases with increased light intensity		1	AO3
	but after light intensity reaches 30 lux, resistance of B is constant whereas the resistance of A continues to go down		1	4.2.1.4
	whereas the resistance of A continues to go down		1	
13.3	when the light level is 13 lux, the resistance of A is about 40 k Ω		1	AO1
	either: the total resistance = $(40 \times 10^3) + (100 \times 10^3) = 140 \times 10^3 \Omega$		either	A02
	current in circuit = $\frac{V}{R} = \frac{6}{140 \times 10^8} = 4.28 \times 10^{-5} \text{ A}$		1	4.2.1.3 4.2.1.4
	so potential difference across the light dependent resistor		1	4.2.2
	$V = IR = (4.28 \times 10^{-5}) \times (40 \times 10^{3}) = 1.7 V$		1	
	so the potential difference across the resistor V _{out} = 6 - 1.7 = 4.3 V		or 1	
	or: $V = \left(\frac{40 \times 10^8}{\left[100 \times 10^8 + 40 \times 10^8\right]}\right) \times 6$		1 1 1	
	= 1.7 V		_	
	so the potential difference across the resistor $V_{out} = 6 - 1.7 = 4.3 \text{ V}$			

Question	Answers	Extra information	Mark	AO / Specification reference
13.4	light dependent resistor A for light dependent resistor B, the lowest value of the resistance of light dependent resistor B is 40 k Ω so the lowest potential difference across the light dependent resistor is 1.7 V so the maximum potential difference of V_{out} is 4.3 V (because they add up to 6 V) to get a potential difference that is higher than 5 V, you need the potential difference across the light dependent resistor to be lower (than 1 V) so you need a light dependent resistor that has a resistance that can go lower		1 1 1 1 1	AO1 AO2 4.2.2 4.2.1.4
14	than 40 k Ω Level 3: Calculations of power generated in each bulb in each circuit. The link between power and brightness is explicit and the statement about brightness is correct.	synoptic question involving ideas from the previous chapter	5-6	AO1 AO2 4.2.2
	Level 2: Calculations of currents in circuits and a comment linking current and resistance to power. Statements about brightness that follow from previous reasoning. Level 1: Recognition that power depends on current and potential difference/resistance. A general statement that bulbs are brighter in parallel/less bright in series		3-4 1-2	4.2.4.1
	No relevant comment.		0	

Question	Answers	Extra information	Mark	AO / Specification reference
	Indicative content:			
	• the brightness of the bulb depends on the power generated in it, $P = I^2R$			
	 in series, the current through each bulb is the same 			
	o current = $\frac{\text{potential difference}}{\text{total resistance}} = \frac{12}{15} = 0.8 \text{ A}$			
	o the 10 Ω lamp will have a power of 0.8 ² × 10 = 6.4 W			
	o the 5 Ω lamp will have a power of 0.8 ² × 5 = 3.2 W			
	\circ the 10 Ω lamp will be brighter.			
	 in parallel the potential difference across each bulb is the same, 12 V 			
	o current through the 5 Ω lamp = $\frac{\text{potential difference}}{\text{total resistance}} = \frac{12}{5} = 2.4 \text{ A}$			
	\circ current through the 10 Ω lamp will be 1.2 A (as the resistance is double,			
	current will be half)			
	o the 10 Ω lamp will have a power of 1.2 ² × 10 = 14.4 W			
	o the 5 Ω lamp will have a power of 2.4 ² × 5 = 28.8 W			
	\circ the 5 Ω lamp will be brighter			