

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	temperature change = 50°C - 20°C		1	AO2
	= 30 °C			4.1.1.3
01.2	energy transferred = mass × specific heat capacity × change in temperature = 1.2 x 900 x 30 = 32 400 J		1 1	AO2 4.1.1.3
01.3	energy is wasted/transferred to the thermal energy store of surroundings.		1	AO2 4.1.2.1
02.1	use loft insulation		1	AO1 4.1.2.1
02.2	the thicker the layer of bricks the slower the energy is transferred/the rate of energy transfer is less/less energy is transferred per second		1	AO1 AO2.1 4.1.2.1
02.3	a low thermal conductivity thermal conductivity is related to the rate of energy transfer /low thermal conductivity means a low rate of energy transfer		1 1	AO1 AO2 4.1.2.1

Question	Answers	Extra information	Mark	AO / Specification reference
03.1	swimming pool:			A01
	energy transferred = mass × specific heat capacity × change in temperature			AO2
	$28.8 \times 10^{6} = mass \times 4200 \times (28 - 18)$		1	AO3
	mass = $\frac{28.8 \times 10^6}{(4200)(10)}$		1	4.1.1.3
	(4200×10)		1	
	= 685 Kg			
	pauding pool.			
	$88 \ \Omega \Omega \Omega \times 10^6 - \max \times 1200 \times (25 - 18)$		1	
	$mass = \frac{88000 \times 10^6}{(4200 \times 7)}$			
	= 2.99×10 ⁶ kg		1	
	$= 3.0 \times 10^{6}$ kg		1	
	swimming pool contains about $\frac{3.0 \times 10^6}{690} = 4300$ times as much water as the			
	paddling pool			
03.2	there is more energy in the thermal energy store of the swimming pool	accept other reasonable	1	AO3
	the paddling pool is at a higher temperature.	suggestions	1	4.1.1.3
				4.1.2.1
04	Level 3: Correct calculation of specific heat capacity, definition of specific heat capacity and power used to explain effect of doubling specific heat capacity.		5-6	AO2

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	Level 2: Calculation of specific heat capacity with conversion errors/comment about heating liquid B but without reference to definition of specific heat capacity.		3-4	AO3 4.3.2.2
	Level 1: Comment about the difference in heating liquid B/attempt at calculating specific heat capacity with errors.		1-2	
	No relevant content.		0	
	 Indicative content energy transferred = mass × specific heat capacity × change in temperature convert 1.8 kJ to 1800 J and 10 g to 0.01 kg substituting, 1800 = 0.01 × specific heat capacity × 50 rearranging, specific heat capacity = 1800/(0.01×50) solving, specific heat capacity = 3600 J/kg °C liquid B has twice the specific heat capacity, so it would take twice as much energy to raise the temperature (of the same mass by 50°C) (if he uses the same heater/a heater with the same power) it would take twice as long. 			
05.1	mass, speed	both needed for the mark	1	AO1 4.1.1.2
05.2	Level 3: Clear and coherent description of energy stores and transfers involved in both situations. Difference clearly stated with reason.		5-6	AO3 4.1.1.1
	Level 2 : Beginning or end stores described and transfers involved in both situations. Difference stated but no reason given.		3-4	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	Level 1: One or more relevant stores stated, with no description of transfer mechanism, or difference.		1-2	
	No relevant comment.		0	
	Indicative content			
	accelerating car:			
	 more energy in the chemical store (petrol) at the beginning 			
	 as it accelerates there is an increasing amount transferred to 			
	 the kinetic energy store 			
	 the thermal energy store of the car the surroundings 			
	o the surroundings			
	motorway car:			
	more energy in the chemical store (petrol) at the beginning this is transformed to the binetic energy store.			
	this is transferred to the kinetic energy store to keep it at a constant level, energy is passed on to			
	• to keep it at a constant level, energy is passed on to			
	• the surroundings			
	both cases:			
	energy is transferred by			
	 mechanical working/force of the engine 			
	o friction			
05.3	oil provides lubrication		1	AO2
	so less energy is transferred to the thermal energy store of the		1	4.1.2.1
	surroundings/less energy is dissipated			

Practice answers

P2

Question	Answers	Extra information	Mark	AO / Specification reference
06.1	the type of insulation/material of can/starting temperature of water/colour of can/lid or no lid		1	AO2 4.1.2.1
06.2	72 in the third column/temperature after 15 minutes for 2cm misreading the thermometer/starting temp of water was higher/any sensible suggestion		1 1	AO3
06.3	sensible suggestion with benefit repeat the experiment more than once and calculate average /makes outliers easier to see/improves accuracy use a bigger range of thicknesses/trend in data is easier to see	one mark for suggestion one mark for benefit only if it clearly links to suggestion	2	AO3
07.1	crosses should be plotted along the following points: (0,20), (2,35), (4,45), (6,50), (8,52) with a curved line of best fit that passes through all points	one mark for correct variable on x-axis and y-axis one mark for appropriate scale on the x-axis and y-axis one mark for three of four points of data plotted correctly two marks for all data points plotted correctly one mark for drawing a line of best fit	5	AO2 AO3 4.1.1.3
07.2	the rate of temperature increase decreases over time the slope of the line decreases/the line becomes less steep/gradient decreases		1 1	AO2.2 4.1.1.3

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

P2

OXFORD Revise

Question	Answers	Extra information	Mark	AO / Specification reference
07.3	energy transferred = mass × specific heat capacity × change in temperature 15 800 = 1 × specific heat capacity × (52 - 20) specific heat capacity = $\frac{15800}{32}$ = 493.75 = 494 J/kg °C (to three significant figures)	allow 494 with no substitution for two marks	1 1 1	AO2 4.1.1.3
07.4	iron	allow error carried forward for incorrect calculation from question 07.3	1	AO3 4.1.1.3
08.1	type of material		1	AO2 4.1.2.1
08.2	suitable variable e.g., temperature drop over 10 minutes		1	AO2 4.1.2.1
08.3	suitable method e.g., wrap a can with a certain thickness of insulating material fill the can with water at a certain temperature put a lid on the can record the temperature drop after ten minutes repeat experiment three times, find average temperature drop repeat whole experiment using a different insulating material each time best insulator is the one with the smallest temperature drop rank materials in order of smallest to largest temperature drop.	four marks are available for describing the method in detail, one mark is available for describing the repetition of measurements one mark is available for describing how to rank them	1 1 1 1 1	AO2 4.1.2.1
08.4	any sensible suggestion e.g., thickness of insulation starting temperature of water		1	AO3 4.1.2.1

Question	Answers	Extra information	Mark	AO / Specification reference
09.1	the temperature decreased		1	AO2
	thermal energy was transferred from the inside of the room to the outside of the room		1	4.1.2.1
09.2	the thermal conductivity of the walls		1	AO1
	temperature difference across the walls		1	4.1.2.1
09.3	<u>line drawn:</u>same initial temperatureshallower gradient		1 1	AO2 AO3 4.1.2.1
	explanation:			
	the line is above the first line		1	
	 because energy is transferred more slowly through the thicker walls 		1	
	 the temperature at any time during the night will be higher 		1	
10.1	D		1	AO3
				4.1.2.1

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.2	 assuming (two from): the thickness of the walls is the same the same amount of energy is transferred temperature difference across walls is the same 	one mark for each correct assumption up to a maximum of two marks	2	AO3 4.1.2.1
	the thermal conductivity of A is bigger than the thermal conductivity of B by a factor of $\frac{0.45}{0.18}$ = 2.5		1	
	so energy travels 2.5 times more slowly through material B time to cool down will be 2.5 times longer 2 hours × 2.5 = 5 hours		1	
10.3	if the thermal conductivity decreases, the rate of energy transfer decreases		1	AO3
	so the time it takes the temperature to go down will increase		1	4.1.2.1
11.1	there is a hazard/risk of injury/the teacher did a risk assessment that suggested that they not do it		1	AO2 4.1.1.3
11.2	so that the temperatures could be compared/the energy transferred per second was the same		1	AO2 4.1.1.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
11.3	for both liquids: as the time increases the temperature increases at an increasing rate and the oil increases at a higher rate than the water/temperature of oil stays steady for a longer time		1 1 1	AO2 4.1.1.3
11.4	assuming the energy supplied to each liquid is the same assuming the mass of each liquid is the same the temperature change of the oil is higher at the end so the oil has a lower specific heat capacity		1 1 1 1	AO3 4.1.1.3
12.1	energy to raise to melting point= mass × specific heat capacity × change in temperature = 0.005 x 371 x (29.8 - 20) = 18(.2) J		1 1 1	AO2 4.1.1.3
12.2	energy is proportional to mass energy = 3 x 18.2 = 54(.6) J		1 1	AO2 4.1.1.3
12.3	it would be about 3 times less if the specific heat capacity is three times bigger, it takes three times the energy to produce the same temperature rise	or words to that effect	1 1	AO2 4.1.1.3
13.1	gravitational potential energy = mass × gravitational field strength × height		1	A01
13.2	estimate mass of human = 50 kg – 100 kg gravitational potential energy = 75 × 9.8 × 0.5 = 367.5 J		1 1 1	AO2 4.1.1.2

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.3	energy stored in a spring = $0.5 \times \text{spring constant} \times \text{extension}^2$ assuming all the energy stored in the muscles/tendons is transferred to the gravitational potential energy store $367.5 = 0.5 \times \text{spring constant} \times 0.01^2$ spring constant = $\frac{367.5}{(0.5 \times 0.01^2)}$ = 7 350 000 N/kg		1 1 1 1	AO2 AO3 4.1.1.2
13.4	gravitational potential energy is proportional to mass if the height is the same mass is 2000 times smaller, so gravitational potential energy is 2000 times smaller spring constant is proportional to energy if the extension is the same spring constant is 2000 times smaller		1 1 1 1	AO3 4.1.1.2