



|      | Answers                                                                                                                                                                                                                                               | Extra information                                                                                               | Mark             | AO /<br>Specification<br>reference   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|
| 01.1 | an induced potential difference is produced by the generator effect/when a conductor moves in a magnetic field/when a magnetic field changes around a conductor                                                                                       |                                                                                                                 | 1                | AO1<br>4.7.3.1                       |
| 01.2 | a device that produces an alternating p.d. is a: dynamo<br>a device that changes the p.d. is a: transformer<br>a device that produces a direct p.d. is a: generator<br>a device that changes a sound wave to an electrical signal is<br>a: microphone | one mark for one correct line<br>two marks for two correct lines<br>three marks for three/four<br>correct lines | 3                | AO1<br>4.7.3.2<br>4.7.3.3<br>4.7.3.4 |
| 01.3 | alternator<br>step-up<br>primary<br>magnetic field                                                                                                                                                                                                    |                                                                                                                 | 1<br>1<br>1<br>1 | AO1<br>4.7.3.2<br>4.7.3.3<br>4.7.3.4 |
| 02.1 | move the magnet faster                                                                                                                                                                                                                                |                                                                                                                 | 1                | AO1<br>4.7.3.1                       |
| 02.2 | move the magnet in and out of the coil<br>the potential difference changes from positive to negative                                                                                                                                                  |                                                                                                                 | 1<br>1           | AO2<br>4.7.3.1                       |
| 02.3 | the direction of the magnetic field inside the coil is opposite to that of the magnet                                                                                                                                                                 | or words to that effect                                                                                         | 1                | AO1<br>4.7.3.1                       |
| 03.1 | diagram with downwards arrow labelled 'force of gravity on student'/'weight'<br>upwards arrow labelled 'force of plank on student'/'normal force'/'reaction<br>force'<br>arrows of equal length                                                       |                                                                                                                 | 1<br>1<br>1      | AO2<br>4.5.1.4                       |





|      | Answers                                                                    | Extra information               | Mark | AO /<br>Specification<br>reference |
|------|----------------------------------------------------------------------------|---------------------------------|------|------------------------------------|
| 03.2 | the forces on the student are equal in magnitude and opposite in direction |                                 | 1    | AO2                                |
|      | so there is no net force/no resultant force                                |                                 | 1    | 4.5.6.2.1                          |
| 03.3 | one mark for diagram with one pivot                                        |                                 | 4    | AO1                                |
|      | one mark for large arrow labelled W at 1.2 m                               |                                 |      | AO2                                |
|      | one mark for small arrow labelled S at 2 m                                 |                                 |      | 4.5.4                              |
|      | one mark for correct distances labelled                                    |                                 |      |                                    |
| 03.4 | total clockwise moment = total anticlockwise moment                        | answer given to two significant | 1    | AO1                                |
|      | $1.2 \times \text{weight} = 400 \times 2.0$                                | figures                         | 1    | AO2                                |
|      | weight = $\frac{800}{1000}$                                                |                                 |      | 4.5.4                              |
|      | 1.2                                                                        |                                 | 1    |                                    |
|      | = 670N (667N)                                                              |                                 |      |                                    |
| 03.5 | weight = mass × gravitational field strength                               |                                 | 1    | A01                                |
| 03.6 | 667 = mass × 9.81                                                          |                                 | 1    | AO2                                |
|      | $mass = \frac{667}{100}$                                                   |                                 |      | 4.5.4                              |
|      | 9.81                                                                       |                                 | 1    |                                    |
|      | = 68 kg (67.99)                                                            |                                 |      |                                    |
| 04.1 | a changing potential difference in the primary coil                        |                                 | 1    | AO2                                |
|      | produces a changing magnetic field in the core                             |                                 | 1    | 4.7.3.1                            |
|      |                                                                            |                                 |      | 4.7.3.4                            |
| 04.2 | number of turns on the primary coil                                        |                                 | 1    | AO2                                |
|      | potential difference across the primary coil                               |                                 | 1    | 4.7.3.4                            |





|      | Answers                                                                                                                | Extra information | Mark   | AO /<br>Specification<br>reference |
|------|------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------------------------------|
| 04.3 | The induced potential difference is proportional to the number of turns on the secondary coil                          |                   | 1      | AO3<br>4.7.3.4                     |
|      | e.g., if you double the number of turns from 10 to 20, the mean induced potential difference doubles from 2.5V to 5.0V |                   | 1      |                                    |
| 04.4 | V = kN, k = $\frac{V}{N} = \frac{2.5}{10} = 0.25$                                                                      |                   | 1      | AO3<br>4.7.3.4                     |
|      | $N = \frac{V}{k} = \frac{3}{0.25}$                                                                                     |                   | 1      |                                    |
|      | = 12                                                                                                                   |                   |        |                                    |
| 05.1 | two coils around an iron core                                                                                          |                   | 1      | AO1<br>4.7.3.4                     |
| 05.2 | $\frac{V_p}{12} = \frac{2000}{100}$                                                                                    |                   | 1      | AO2<br>4.7.3.4                     |
|      | $V_{\rm p} = 12 \times 20$ $= 240 \text{ V}$                                                                           |                   | 1<br>1 |                                    |
| 05.3 | no                                                                                                                     |                   | 1      | A01                                |
|      | it is a step down because $N_{\rm p}$ is bigger than $N_{\rm s}$                                                       |                   | 1      | AO2<br>4.7.3.4                     |
| 05.4 | iron is a magnetic material<br>the magnetic field in the core in stronger                                              |                   | 1<br>1 | A01<br>A02                         |
|      |                                                                                                                        |                   |        | 4.7.3.4                            |





|      | Answers                                                                                                                                 | Extra information         | Mark   | AO /<br>Specification<br>reference |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|------------------------------------|
| 06.1 | the wire is a moving conductor in a magnetic field                                                                                      |                           | 1      | A01                                |
|      | which is cutting the magnetic field (lines) causing a changing magnetic field                                                           |                           | 1      | AO2<br>4.7.3.1                     |
| 06.2 | the graph shows how the induced pd varies with the position of the coil                                                                 |                           | 1      | A01                                |
|      | the induced potential difference is maximum when the coil is parallel to the magnetic field/cuts the field lines at 90°/perpendicularly |                           | 1<br>1 | AO2<br>4.7.3.2                     |
|      | the coil could be at B or D                                                                                                             |                           | 1      |                                    |
|      | this is where the (plane of) the coil is parallel to the field                                                                          |                           |        |                                    |
| 06.3 | rotate the coil through 90°/put the coil at 90° to its current position                                                                 |                           | 1      | AO3                                |
|      | put an alternating current through the turns of the electromagnet                                                                       |                           | 1      | 4.7.3.1                            |
| 07.1 | ~ = a.c./alternating current                                                                                                            |                           | 1      | AO3                                |
|      | = d.c./direct current                                                                                                                   |                           | 1      | 4.7.3.1                            |
| 07.2 | power = potential difference × current                                                                                                  |                           | 1      | A01                                |
| 07.3 | mains potential difference = 230 V                                                                                                      | recalling mains potential | 1      | A01                                |
|      | current = 1.8 A                                                                                                                         | difference                |        | AO2                                |
|      | power = 230 × 1.8                                                                                                                       |                           | 1      | 4.7.3.4                            |
|      | = 414                                                                                                                                   |                           | -      |                                    |
|      | = 410 W                                                                                                                                 |                           |        |                                    |





|      | Answers                                                                                                                                                                                                                                   | Extra information                                                                  | Mark        | AO /<br>Specification<br>reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|------------------------------------|
| 07.4 | power = potential difference × current<br>= 19.5 × 4.62<br>= 90.09<br>= 91 W                                                                                                                                                              |                                                                                    | 1<br>1      | AO2<br>4.7.3.4                     |
| 07.5 | the output power is much smaller than the input power<br>the transformer is not 100% efficient<br>some of the energy transferred by the current is transferred to the thermal<br>energy store of the surroundings so the adapter gets hot |                                                                                    | 1<br>1<br>1 | AO3<br>4.7.3.4                     |
| 08.1 | one mark for general shape<br>one mark for potential difference in one direction only/all positive or all negative<br>one mark for labelled axes                                                                                          |                                                                                    | 3           | AO2<br>4.7.3.2                     |
| 08.2 | the potential difference is only one sign/only positive/only negative<br>which shows that it is in one direction only<br>which will produce a direct (not an alternating) current                                                         |                                                                                    | 1<br>1<br>1 | AO3<br>4.7.3.2                     |
| 08.3 | the potential difference would be negative/positive                                                                                                                                                                                       | must be opposite potential<br>difference to that shown in<br>graph of question 8.1 | 1           | AO2<br>4.7.3.2                     |
| 08.4 | there would be more cycles/oscillations<br>the magnitude of the potential difference is twice as big                                                                                                                                      |                                                                                    | 1<br>1      | AO2<br>4.7.3.2                     |
| 09.1 | a transformer contains wire that heats up when a current flows through it<br>transferring energy to the thermal energy store of the surroundings                                                                                          |                                                                                    | 1<br>1      | AO2<br>4.7.3.4                     |





|      | Answers                                                                                                                                                               | Extra information | Mark | AO /<br>Specification<br>reference |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|------------------------------------|
| 09.2 | power = potential difference × current                                                                                                                                |                   | 1    | AO1<br>4.7.3.4                     |
| 09.3 | current =<br>potentialdifference                                                                                                                                      |                   | 1    | AO2<br>4.7.3.4                     |
|      | $120 \text{ MW} = 1.2 \times 10^8 \text{ W}$                                                                                                                          |                   | 1    |                                    |
|      | 400 kV = 400 000V                                                                                                                                                     |                   | 1    |                                    |
|      | $\frac{1.2 \times 10^8}{400000} = 300 \text{ A}$                                                                                                                      |                   | 1    |                                    |
| 10   | <b>Level 3</b> : Correctly links pressure to movement of diaphragm. Links movement to potential difference in positive and negative direction. Well organised answer. |                   | 5-6  | AO1<br>AO2                         |
|      | <b>Level 2</b> : Links movement of air to movement of diaphragm. Links movement to potential difference in but not direction. Some organisation of answer.            |                   | 3-4  | 4.7.3.3                            |
|      | <b>Level 1:</b> Some link between air movement and movement of coil. Answer shows poor organisation.                                                                  |                   | 1-2  |                                    |
|      | No relevant content.                                                                                                                                                  |                   | 0    |                                    |





|      | Answers                                                                                                                                  | Extra information                     | Mark | AO /<br>Specification<br>reference |
|------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|------------------------------------|
|      | Indicative content:                                                                                                                      |                                       |      |                                    |
|      | <ul> <li>there are areas of high and low pressure in a sound wave</li> </ul>                                                             |                                       |      |                                    |
|      | <ul> <li>because air molecules in a sound wave move backwards and forwards as it is<br/>a longitudinal wave</li> </ul>                   |                                       |      |                                    |
|      | <ul> <li>when the high-pressure area hits the diaphragm, it pushes the diaphragm in</li> </ul>                                           |                                       |      |                                    |
|      | <ul> <li>the coil moves through the magnetic field</li> </ul>                                                                            |                                       |      |                                    |
|      | <ul> <li>which produces a potential difference in one direction</li> </ul>                                                               |                                       |      |                                    |
|      | <ul> <li>when the low-pressure area hits the diaphragm, it pulls the diaphragm out/<br/>the diaphragm is not pushed in as far</li> </ul> |                                       |      |                                    |
|      | <ul> <li>which produces a potential difference in the other direction</li> </ul>                                                         |                                       |      |                                    |
| 11.1 | 20Hz – 20 000Hz/20 – 20kHz                                                                                                               |                                       | 1    | AO1<br>4.6.1.4                     |
| 11.2 | speed = frequency × wavelength                                                                                                           |                                       | 1    | AO1<br>4.6.1.2                     |
| 11.3 | 5000 = 400 000 × wavelength                                                                                                              | do not credit answers with            | 1    | AO2                                |
|      | wavelength = $\frac{5000}{400000}$                                                                                                       | three significant figures<br>(0.0125) | 1    | 4.6.1.2                            |
|      | = 0.013 m                                                                                                                                |                                       | 1    |                                    |





|      | Answers                                                                 | Extra information | Mark | AO /<br>Specification<br>reference |
|------|-------------------------------------------------------------------------|-------------------|------|------------------------------------|
| 11.4 | distance = speed × time                                                 |                   | 1    | A01                                |
|      | distance = $5000 \times 8.4 \times 10^{-7}$                             |                   | 1    | AO2                                |
|      | = 0.0 042m                                                              |                   |      | 4.5.0.1.2                          |
| 11.5 | 0.0042                                                                  |                   | 1    |                                    |
|      | 2                                                                       |                   |      |                                    |
|      | = 0.0 021 m                                                             |                   | 1    |                                    |
| 12.1 | $\frac{1.85+2+1.9}{1.85+2} = 1.92$                                      |                   | 1    | AO2                                |
|      | 3                                                                       |                   |      | 4.7.3.1                            |
| 12.2 | one mark for points correctly plotted                                   |                   | 2    | AO2                                |
|      | one mark for line of best fit                                           |                   |      | AO3                                |
|      |                                                                         |                   |      | 4.7.3.1                            |
| 12.3 | 0.8 V                                                                   | allow 0.7 – 0.9 V | 1    | AO2                                |
|      |                                                                         |                   |      | 4.7.3.1                            |
| 12.4 | random error                                                            |                   | 1    | AO3                                |
|      |                                                                         |                   |      | 4.7.3.1                            |
| 13.1 | the atmosphere is assumed to have a constant density                    |                   | 1    | A01                                |
|      | so the pressure at a point is due to the weight of air above that point |                   | 1    | 4.5.5.2                            |
|      |                                                                         |                   |      |                                    |





|      | Answers                                                                                                                                                                                                                            | Extra information                                     | Mark             | AO /<br>Specification<br>reference |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|------------------------------------|
| 13.2 | as you come down a mountain the height/weight of air above you increases<br>so the pressure increases<br>which is the same when you dive in the ocean<br>but the liquid pressure is much bigger than the atmospheric pressure.     |                                                       | 1<br>1<br>1<br>1 | AO1<br>AO2<br>4.5.5.2<br>4.5.5.1.2 |
| 13.3 | $\frac{\text{densityof water}}{\text{densityof air}} = \frac{84}{0.1}$<br>= 840<br>water is 840 times denser than air                                                                                                              |                                                       | 1                | AO2<br>4.5.5.2<br>4.5.5.1.2        |
| 14.1 | diagram with 4 arrows:<br>vertical arrow down: weight/force of gravity on boat<br>vertical arrow up: upthrust/force of water on boat<br>horizontal arrow: thrust<br>opposing horizontal arrow: drag/force of water and air on boat | allow two separate arrows for<br>air/water resistance | 1<br>1<br>1<br>1 | AO1<br>AO2<br>4.5.1.2<br>4.5.1.4   |
| 14.2 | force = mass × acceleration                                                                                                                                                                                                        |                                                       | 1                | A01                                |
| 14.3 | $3000 = 850 \times \text{acceleration}$ $\text{acceleration} = \frac{300}{850}$ $= 3.5 \text{ m/s}^2$                                                                                                                              |                                                       | 1<br>1<br>1      | AO2<br>4.5.6.2.2                   |





|      | Answers                                                                                                                                                                                                              | Extra information       | Mark             | AO /<br>Specification<br>reference |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------------------------|
| 14.4 | force = mass × acceleration<br>= 2.7 × 850<br>= 2295 N (2300)<br>resultant force = engine force - drag force<br>2295 = 3000 - drag force<br>drag force = 3000 - 2295<br>= 705 N<br>= 710 N (two significant figures) |                         | 1<br>1<br>1<br>1 | AO1<br>AO2<br>4.5.6.2.2            |
| 14.5 | final velocity <sup>2</sup> – initial velocity <sup>2</sup> = 2 × distance × acceleration<br>$(14)^2 - (0)^2 = 2 \times \text{distance} \times 2.7$<br>distance = $\frac{196}{2 \times 2.7}$<br>= 36 m (36.3)        | allow $v^2 = u^2 + 2as$ | 1<br>1<br>1      | AO2<br>4.5.6.1.5                   |