AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
01.1	transverse		1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.1 } \end{gathered}$
01.2	any correct wavelength - e.g., horizontally from peak to peak/trough to trough	any point on a wave to the same point on the next wave in the horizontal direction	1	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$
01.3	move hand up and down a small distance the amplitude is the distance from the middle to the top or to the bottom of a wave		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
02.1	amplitude $=$ half the peak to trough height $=\frac{34}{2}=17 \mathrm{~m}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$
02.2	$\begin{aligned} & \text { period }=\frac{1}{\text { frequency }}, 14.8 \mathrm{~s}=\frac{1}{\text { frequency }} \\ & \text { frequency }=\frac{1}{14.8} \mathrm{~s}=0.068 \mathrm{~Hz} \\ & \text { speed }=\text { frequency } \times \text { wavelength } \\ & \text { speed }=0.068 \times 342 \\ & =23(.2) \mathrm{m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.6.1.2 } \end{gathered}$
02.3	accept values between 1.0 and $2.5 \mathrm{~cm} / 0.01-0.025 \mathrm{~m}$		1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
02.4	comparison of speeds and amplitudes using ratios if wave speed and amplitude are proportional, then $\frac{\text { wave speed }}{\text { amplitude }}=$ constant for ocean wave: $\frac{23.2}{17}=1.4$ (1.38) for ripple tank: $\frac{0.5}{0.02}=25$ the ratios are different, so wave speed is not proportional to amplitude	one mark for method of deciding proportionality explicitly stated or implied one mark for calculations one mark for conclusion consistent with calculations	1 1 1	AO3
03.1	the surface of the water moves up and down at $90^{\circ} /$ perpendicular/at right angles to the direction of motion of the wave which moves across the pond		1	$\begin{gathered} \text { AO1 } \\ \text { 4.6.1.1 } \end{gathered}$
03.2	the air particles move backwards and forwards in the same direction as the motion of the wave so at 90° to the direction of motion of the water surface/particles on surface		1 1	$\begin{gathered} \text { AO1.1 } \\ \text { AO2 } \\ 4.6 .1 .1 \end{gathered}$
03.3	speed $=$ frequency \times wavelength	accept $\mathrm{v}=\mathrm{f} \lambda$ or correct rearrangements	1	A01
03.4	$\begin{aligned} & 340=400 \times \text { wavelength } \\ & \text { wavelength }=\frac{340}{400} \\ & =0.85 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
04.1	C above a place where the coils are close together R above a place where the coils are far apart		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .1 \end{gathered}$

[^0]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
04.2	distance of 1.5 m is for 3 waves because the wavelength is the distance from one compression to the next $\frac{1.5}{3}=0.5 \mathrm{~m}$			$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.6 .1 .1 \\ 4.6 .1 .2 \end{gathered}$
04.3	speed $=$ frequency \times wavelength	accept $v=f \lambda$ or correct rearrangements	1	A01
04.4	$\begin{aligned} & 1.0=\text { frequency } \times 0.5 \\ & \text { frequency }=\frac{1.0}{0.5} \\ & =2 \end{aligned}$ Hz the person needs to move their hand in and out 2 times every second		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.1.1 } \\ \text { 4.6.1.2 } \end{gathered}$
05.1	sound waves		1	$\begin{gathered} \text { AO1 } \\ \text { 4.6.1.1 } \end{gathered}$
05.2	Level 3: Describes how to set up an experiment, with clear details about what would be seen, and what it shows. Answer shows clear organisation.		5-6	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .1 \\ 4.6 .1 .2 \\ 4.6 .1 .3 \end{gathered}$
	Level 2: Describes the observations or an experiment with some details of what is seen or what it shows. Answer shows some organisation.		3-4	
	Level 1: Describes experiments or observations with limited detail. Answer shows poor organisation.		1-2	
	No relevant content.		0	

[^1]| | Answers | Extra information | Mark | AO /
 Specification reference |
| :---: | :---: | :---: | :---: | :---: |
| | Indicative content:
 - you can show that water waves do not transfer water by putting a floating object on the surface of the water
 - as the ripple moves past the object moves up and down
 - it does not move forward, showing that the wave does not transfer water
 - you can show that sound waves do not transfer air by putting a candle/suspending a very light ball in front of a loudspeaker
 - as the sound wave moves through the candle/ball moves backwards and forwards
 - it does not move forward, showing that the wave does not transfer air | | | |
| 06.1 | light from the flash of the gun travels instantaneously/very fast/takes no time to reach the scientist | | 1 | $\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$ |
| 06.2 | distance between him and the gun time between seeing the flash of the gun and hearing the sound | | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$ |
| 06.3 | $\begin{aligned} & \text { fractional difference }=\frac{478.4-340}{340} \\ & =\frac{138.4}{340} \\ & =0.41 \\ & 0.41 \times 100=41 \% \end{aligned}$ | | 1
 1
 1 | $\begin{gathered} \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$ |

[^2]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
06.4	the cannons are 29000 m apart $\begin{aligned} & \text { speed }=\frac{\text { distance }}{\text { time }} \\ & 332=\frac{29000}{\text { time }} \\ & \text { time }=\frac{29000}{332} \\ & =87(.3) \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$
06.5	may be much longer time period as 29 km distance very long but original distance not quoted so reaction time produces less error/easier to make precise measurement of a long time interval.	alternative: both measurements are sound not one light and one sound, not relying on long distance vision/hard to see flash at distance	1 1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.1.2 } \end{gathered}$
07.1	the wires are connected to a power supply, and are close to water /exposed wires in contact with water can cause a shock ensure wires are insulated and not in contact with the water.		1 1	AO2
07.2	frequency (Hz) wavelength (m)	units must be included in each case for the marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
07.3	frequency: number of waves passing a point and divide by 10 or $=\frac{5}{10}=0.5 \mathrm{~Hz}$ the frequency is the number of waves per second. wavelength: divide 0.2 m by 15 or $=\frac{0.2}{15}=0.013 \mathrm{~m}$ the wavelength is the distance between two points on the same wave.		1 1 1 1	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
07.4	speed $=$ frequency \times wavelength	accept $v=f \lambda$ or correct rearrangements	1	A01
07.5	$\begin{aligned} & \text { frequency }=\frac{5}{10}=0.5 \mathrm{~Hz} \\ & \text { wavelength }=\frac{0.2}{15}=0.0133 \mathrm{~m} \\ & \text { wave speed }=0.5 \times 0.0133 \\ & =7 \times 10^{-3} \mathrm{~m} / \mathrm{s}(0.0067) \end{aligned}$ the smallest number of significant figures given in the question data is 1 (5 waves)	one mark for giving answer to one significant figure and one mark for giving it in standard form	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
08.1	one mark for drawing normal and barrier one mark for ray at 30° to normal in and out (by eye or labelled) one mark for wave fronts drawn at 90° to the ray one mark for same wavelength for incident and reflected waves (wave fronts same distance apart)		4	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.3 } \end{gathered}$
08.2	energy is transferred to the barrier energy is related to amplitude		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.3 } \end{gathered}$

	Answers	Extra information	Mark	\qquad
08.3	any suitable example, e.g., you can hear people in the next room talking through the wall		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .3 \end{gathered}$
08.4	the frequency stays the same the wavelength increases		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .3 \end{gathered}$
09.1	the condition of the road affects the frictional force between the tyres and the road/icy road means less friction friction allows the car to stop/so car has bigger braking distance when icy		1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .6 .3 .3 \end{gathered}$
09.2	thinking distance is the distance the car travels while the driver is reacting if the speed is bigger the car travels further in his reaction time braking distance is the distance travelled while the car is braking if the speed is bigger car travels further if the braking force is the same		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1 4.5.6.3.1 4.5.6.3.2 4.5 .6 .3 .3
09.3	graph A for a given speed the stopping distance is bigger		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .6 .3 .3 \end{gathered}$
09.4	$\begin{aligned} & \text { thinking distance }=\text { speed } \times \text { time } \\ & =22.3 \times 0.4 \\ & =8.9(2) \mathrm{m} \end{aligned}$ thinking distance does not depend on the condition of the road so it is the same for both surfaces. stopping distance for icy road $=80 \mathrm{~m}$ and for dry road $=50 \mathrm{~m}$ braking distance $=$ stopping distance - thinking distance icy road $=80-8.9=71(.1) \mathrm{m}$ dry road $=50-8.9=41(.1) \mathrm{m}$	reading stopping distances off the graph	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

[^3]This resource sheet may have been changed from the original.

	Answers	Extra information	Mark	\qquad
10.1	(in one minute, or 60 s) the runner travels $180 \times 2.0 \mathrm{~m}=360 \mathrm{~m}$ $\begin{aligned} & \text { speed }=\frac{\text { distance }}{\text { time }} \\ & =\frac{360}{60} \\ & =6 \mathrm{~m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$
10.2	stride length		1	$\begin{gathered} \mathrm{AO3} \\ 4.6 .1 .2 \end{gathered}$
10.3	number of strides per minute frequency is the number of waves per unit length		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.6 .1 .2 \end{gathered}$
10.4	in question 10.1, to work out the speed you multiplied the number of strides per minute/per second by the stride length which is equivalent to multiplying frequency by wavelength which is the same as using the wave equation		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.6 .1 .2 \end{gathered}$
10.5	a wave can be reflected, refracted, transmitted or absorbed when it hits a boundary between two media discussion of two issues with modelling the above phenomena e.g., a person could not easily model reflection because they would need to bounce off at equal angles a person cannot be refracted/absorbed by a boundary	list of possible things that happen at a boundary, stated or implicit	1 1 1	$\begin{gathered} \text { AO3 } \\ 4.6 .1 .3 \end{gathered}$
11.1	one wave in five squares each square is 0.1 ms period $=5 \times 0.0001$ $=5 \times 10^{-4} \mathrm{~s}$	answer given in standard form	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$

[^4]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
11.2	speed $=$ frequency \times wavelength	accept $\mathrm{v}=\mathrm{f} \lambda$ or correct rearrangements	1	A01
11.3	$\begin{aligned} & \text { frequency }=\frac{1}{\text { period }} \\ & =\frac{1}{5 \times 10^{-4}} \\ & =2000 \mathrm{~Hz} \end{aligned} \begin{aligned} & 340=2000 \times \text { wavelength } \\ & \text { wavelength }=\frac{340}{2000} \\ & =0.17 \mathrm{~m} \end{aligned}$		1 1 1	
11.4	amplitude $=3$ squares $3 \times 2 \mathrm{~V}$ per square $=6 \mathrm{~V}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.1 } \end{gathered}$
12.1	independent: length (of ruler) dependent: deflection control variable: two from - mass - position of mass - type of ruler	one mark for each correct answer up to a maximum of two marks	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
12.2	appropriate method, e.g., - fixed another ruler behind the ruler and measure the deflection - change the length of the ruler a number of times and measure again - repeat the experiment three times for each length, take the average of repeat readings	one mark for method of measuring deflection one mark for measuring deflection and change length one mark for repeating measurements/calculating means	3	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
12.3	if the deflection is proportional to the length, then doubling the length should double the deflection looking at results for lengths of 0.2 m and 0.4 m , the deflection increases from 3.5 to 4.2, which is not double.		1 1	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
12.4	for example: - how does the mass affect the deflection of the ruler? - how does the position of the mass affect the deflection of the ruler?	accept any sensible suggestion	1	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
13.1	zero		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.6.1.3 } \end{gathered}$
13.2	distance $=4.5 \times 1609=7240.5(\mathrm{~m})$	accept 7241	1	A01
13.3	$\begin{aligned} & \text { distance }=7240.5 \times 2=14481 \mathrm{~m} \\ & \text { time }=20 \mathrm{~min} \times 60 \mathrm{~s}=1200 \mathrm{~s} \\ & \text { speed }=\frac{\text { distance }}{\text { time }} \\ & =\frac{14480}{1200} \\ & =12(.07) \mathrm{m} / \mathrm{s} \end{aligned}$	allow error carried forward	1 1 1 1	AO1 AO2 4.5.6.1.2

[^5]
AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
13.4	the speed varies over the journey, but the calculation uses total distance/total time which gives average speed		1	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
14.1	$\begin{aligned} & 5 \text { miles }=5 \times 1609=8045 \mathrm{~m} \\ & 1 \text { hour }=3600 \mathrm{~s} \\ & 5 \mathrm{mph}=\frac{8045}{3600} \\ & =2.23 \mathrm{~m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
14.2	$\text { acceleration }=\frac{\text { change in velocity }}{\text { time }}$	accept $\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}$ or correct rearrangement	1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.6.1.2 } \end{gathered}$
14.3	$\begin{aligned} & \mathrm{a}=\frac{2.2}{5.0} \\ & =0.44 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.6.1.5 } \end{gathered}$
14.4	force $=$ mass \times acceleration	accept $\mathrm{F}=\mathrm{ma}$ or correct rearrangement	1	A01
14.5	$\begin{aligned} & \mathrm{F}=1250 \times 0.44 \\ & =550 \mathrm{~N} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.6.2.2 } \end{gathered}$
14.6	constant speed - driving and resistive forces are equal. acceleration - driving force is bigger than the resistive forces resistive forces increase with speed		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.2.1 } \\ \text { 4.5.6.2.2 } \end{gathered}$

[^0]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^1]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^2]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^3]: © Oxford University Press www.oxfordsecondary.co.uk

[^4]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^5]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

