

		Answers		Extra information	Mark	AO / Specification reference
01.1	1 one marl		one mark for each correct	2	AO1	
	Factor	Affects thinking distance	Affects braking distance	column		AO2
	road conditions		✓			4.5.6.3.1
	distractions in the car	1				4.5.6.3.2 4.5.6.3.3
	speed	1	 ✓ 			
01.2	appropriate example e.g if you are tired your reac the thinking distance wil	., tiredness tion time is greater l increase		accept other examples e.g., drugs/alcohol	1 1 1	AO1 4.5.6.3.2
01.3	appropriate example e.g icy road conditions will in the stopping distance = t the stopping distance wi	., ncrease the braking dista he thinking distance + th Il increase	nce e braking distance		1 1 1	AO1 4.5.6.3.1 4.5.6.3.3
02.1	thinking distance = speed = 13.4 × 0.67 = 8.978 m = 9.0 m	d × reaction time		answer given to two significant figures	1 1	AO2 4.5.6.3.2
02.2	stopping distance = 13.9 = 23 m	m + 8.978 m = 22.878 m		answer given to two significant figures	1 1	AO2 4.5.6.3.1

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

	Answers	Extra information	Mark	AO / Specification reference
02.3	thinking distance at 50 mph = thinking distance at 30 mph × $\frac{50}{30}$ = 9.00 × $\frac{50}{30}$ = 15 m the distance is proportional to the speed if the reaction time is constant	accept working out thinking distance using equation	1 1 1	AO2 AO3 4.5.6.3.1 4.5.6.3.2 4.5.6.3.3
02.4	braking distance = stopping distance - thinking distance (= 53.0 – 15) = 38 m		1 1	AO2 4.5.6.3.1 4.5.6.3.2 4.5.6.3.3
03.1	 independent – type of surface dependent – distance it travels on the surface before stopping control – any two from: height of ramp position of release of trolley type of trolley/mass of trolley 	one mark for each correct point up to a maximum of two marks	1 1 2	AO2

	Answers	Extra information	Mark	AO / Specification reference
03.2	method e.g.,raise one end of the ramp by a height h		max 5	A01
	• cover the floor at the other end of the ramp with a type of surface			
	 place a trolley at the top of a ramp and releases it 			
	 measure the distance the trolley travels from the bottom of the ramp to the place that it stops 			
	 repeat the experiment twice more with the same surface 			
	 replace the surface with a different material and repeat the experiment with ramp at same height h 			
	 identify outliers; do not include them in the calculation of mean 			
03.3	appropriate example with improvement e.g.,	or leaving ramp – make		AO3
	releasing the trolley from exactly the same place each time	transition as smooth as possible	1	
	<u>improvement:</u> draw a line on the ramp and line up the back of the trolley with	by making sure the surface is at	1	
		of the ramp		
03.4	this is a good model because different surfaces will affect the stopping distance		1	AO2
	difference surfaces produce different frictional forces on the trolley, so do		1	AO3
			1	4.5.6.3.4
03.5	the investigation does not involve braking because the trollev does not have brakes	or no thinking distance can be included as no (brain' in the	1	AO3
		trolley	1	

	Answers	Extra information	Mark	AO / Specification reference
04.1	as distance increases, the reaction time increases at a decreasing rate / they are not directly proportional if you have a longer reaction time the ruler will fall further		1	AO2 AO3 4.5.6.3.2
04.2	0.23 s	accept 0.22 – 0.24	1	AO2 4.5.6.3.2
04.3	yes typical reaction times range from 0.2 – 0.9 s		1 1	AO1 AO2 4.5.6.3.2
04.4	 appropriate example e.g., the partner holds the ruler a big distance above the student's hand the distance it falls will be larger than it should be the reaction time will be smaller than it actually is as they are no longer proportional 		1 1 1	AO3 4.5.6.3.2
05.1	the data is checked by other scientists peer review		1 1	A01
05.2	force is measured in newtons/kilograms or tonnes are both a unit of mass, not force		1	AO1 4.5.1.3
05.3	weight = mass × gravitational field strength	allow W = mg	1	AO1 4.5.1.3
05.4	W = 1000 × 9.8 = 9800 N		1 1	AO2 4.5.1.3
05.5	people (without a science background) reading the article may be able to relate better to tonnes than to newtons.		1	AO3

This resource sheet may have been changed from the original.

	Answers	Extra information	Mark	AO / Specification reference
05.6	$momentum = mass \times velocity$ $acceleration = \frac{change in velocity}{time}$ $velocity = acceleration \times time = 9.8 \times 2.5$ $= 24.5 \text{ m/s}$ $momentum = 2.5 \times 24.5$ $c4.2 \text{ kg m} (s)$	or Ft = mv-mu 2.5 x 9.8 x 2.5 = mv – 0 mv = 61.25 kg m/s	1 1 1 1	AO1 AO2
06.1	= 61.3 kg m/s momentum = mass × velocity = 65 × 5 = 325 kg m/s		1 1 1	AO1 AO2 4.5.7.1
06.2	momentum is conserved the mass of the two skaters together after the collision is bigger than the mass of the single skater before the collision so the velocity of the two people together will be less than 5.0 m/s assuming the system is closed/there are no external forces acting		1 1 1 1	AO1 AO2 4.5.7.1
06.3	momentum before = momentum after $325 = (65 + 85) \times \text{velocity afterwards}$ $\text{velocity afterwards} = \frac{325}{65+85}$ = 2.17/2.2 m/s		1 1 1	AO2 4.5.7.1
06.4	the barrier exerts an external force the system is not closed		1 1	AO1 AO2 4.5.7.1

	Answers	Extra information	Mark	AO / Specification reference
07.1	70 miles = 70 x 1609 m = 112 630m 1 hour = 3600s speed = $\frac{112630}{3600}$ = 31(.3) m/s		1 1 1	AO1 AO2 4.5.6.1.2
07.2	keep the cars far enough apart/a big distance apart so that the driver can brake in time/the distance is bigger than the stopping distance		1 1	AO3 4.5.6.3.1 4.5.6.3.2
07.3	thinking distance = stopping distance - braking distance = 96 - 75 = 21 m distance = speed × time 21 = 31.3 x time time = $\frac{21}{31.3}$ = 0.67s		1 1 1 1	AO1 AO2 4.5.6.3.1 4.5.6.3.2
07.4	the distance is half the stopping distance		1	AO3 4.5.6.3.1
07.5	correct suggestion e.g., the driver will start to brake when they see the brake lights of the car in front during that time the car in front is also coming to a stop or to see 2 chevrons, the cars need to be 3 chevrons apart so 120 m, not 80 m		1 1 or 1 1	AO3 4.5.6.3.1

	Answers	Extra information	Mark	AO / Specification reference
08.1	graph B in an emergency stop the driver presses the brake pedal harder/uses a bigger force producing a bigger deceleration at every speed the braking distance is shorter.		1 1 1	AO2 AO3 4.5.6.3.3 4.5.6.3.4
08.2	appropriate suggestion e.g., internal organs can be damaged/the organs of your body continue to move	or extra friction on/damage to the tyres	1	AO2 4.5.6.3.4
08.3	no difference/it is the same at a particular speed thinking distance is related to reaction time, which is the same in both situations at the same speed		1 1	AO1 AO2 4.5.6.3.1 4.5.6.3.2
09.1	texting and conversation increase your reaction time conversation by up to 1.9 and texting by up to three times as long which increases your thinking distance/stopping distance causing more accidents		1 1 1	AO3 4.5.6.3.2
09.2	thinking distance = speed × reaction time with no phone: = $13.4 \times 1.00 = 13.4$ m complex conversation: = $13.4 \times 1.80 = 24.12$ m difference = $24.12 - 13.4 = 10.7$ m		1 1 1	AO2 4.5.6.3.2

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

	Answers	Extra information	Mark	AO / Specification reference
09.3	24.12 m = speed × 1.00 s		1	AO2
	speed = $\frac{24.12}{1}$		1	AO3
	1.00		1	4.5.6.3.2
	= 24.12 m/s		1	
	$24.12 \times \frac{30}{13.4} = 54 \text{ mph}$		1	
	having a conversation has the effect of nearly doubling the effective speed of the car in terms of thinking distance.			
10.1	force = spring constant × extension		1	A01
10.2	extension = 1.25 - 1.00 = 0.25 m		1	A02
1012	100 = spring constant × 0.25		1	7.02
	spring constant - $\frac{100}{100}$		1	
	0.25		1	
	= 400 N/m			
10.3	$H = L_2 + d$			AO3
	$= 1.25 \pm 0.5$		1	
	= 1.75 m		1	
11.1	maximum force with airbag = 800 N	readings from graph	1	AO2
	maximum force without airbag = 4750 N			AO3
	ratio of forces = $\frac{4750}{100}$ = 5.9		1	4.5.7.3
	800		1	
	the force without an airbag is nearly 6 times the force with an air bag			
11.2	estimate between 500 N and 800 N		1	AO3 4.5.7.3

	Answers	Extra information	Mark	AO / Specification reference
11.3	force = change in momentum			A01
	time			AO2
	momentum = mass x velocity		1	4.5.7.3
	force = mass×change in velocity			
	time 750 ma 750 10 ⁻³ -		1	
	$750 \text{ ms} = 750 \times 10^{-5} \text{ s}$			
	$750 = \frac{60 \times \text{change in Verocity}}{750 \times 10^{-3}}$		1	
	750×10 ⁻		1	
	change in velocity = $\frac{750}{60} \times 750 \times 10^{-3}$		1	
	= 9.4 m/s			
	final velocity = 0 m/s, so initial velocity = 9.4 m/s			
11.4	the acceleration is less/change in velocity happens over a longer time		1	AO1
	the force required is much smaller for the same change in momentum		1	AO2
				4.5.7.3
12.1	work is done by friction/energy transferred mechanically		1	A01
				4.5.6.3.4
12.2	the brakes/the surroundings		1	A01
				4.5.6.3.4

	Answers	Extra information	Mark	AO / Specification reference
12.3	deceleration = $\frac{\text{change in speed}}{\text{time taken}}$ = $\frac{20}{4.3}$ = 4.7 m/s ² assuming the acceleration is constant the acceleration is probably not constant because the brakes do not exert a constant force		1 1 1 1	AO1 AO2 AO3 4.5.6.3.4
12.4	braking force = mass × deceleration = 1250 × 4.7 = 5875 (= 5900 N) this is similar to the forces exerted by car engines	accept F = ma	1 1 1	AO2 4.5.6.3.4
13.1	weight = mass × gravitational field strength = 1 × 9.8 = 9.8 N		1 1 1	AO1 AO2 4.5.1.3
13.2	work = force × distance = 9.8 N × 1 m = 9.8 J		1 1 1	AO1 AO2 4.5.2
13.3	9.8 N	allow error carried forward	1	AO2 4.5.1.3

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

	Answers	Extra information	Mark	AO / Specification reference
14.1	kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$			AO1
	$= 0.5 \times 1500 \times 13.4^{\circ}$		1	AO2
	= 134670 $= 1.25 \times 10^5 $		1	4.1.1.2
	-1.55×10 J		1	
14.2	work done = force × distance		1	AO1
	$1.35 \times 10^5 = 10000 \times distance$		1	AO2
	distance = $\frac{1.35 \times 10^5}{10^5}$		1	4.5.2
	10000		1	4.1.1.2
	= 13.5 m		1	
	difference = 13.5 - 9.4 = 4.1 m			
14.3	$(final velocity)^2 - (initial velocity)^2 = 2 \times acceleration \times distance$			AO2
	final velocity = $\sqrt{(2 \times acceleration \times distance) + (initial velocity)^2}$		1	4.5.6.1.5
	final velocity = $\sqrt{(2 \times (-6.7) \times 9.4) + 13.4^2}$		1	
	final velocity = 7.32 m/s		1	
	$= 7.32 \times \frac{3600}{3}$			
	1609		1	
	= 10.4 mpn		1	
14.4	sensible suggestion with reason e.g.,			AO3
	approach two		1	
	cause injury to a person that they hit at that speed.		1	