AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
01.1	hold the ruler as close to the centre of the light gates as possible, with the ruler vertical make the measurement by looking directly at/at 90° to the ruler.		1 1	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$
01.2	suitable suggestion e.g., the card was dropped from different heights above light gate 1		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.4 } \end{gathered}$
01.3	the light gates use a light beam so produces a measurement of time, and the computer calculates velocity, so velocity measurements are more precise/more significant figures the data logger can measure to $\frac{1}{1000}$ second/1 ms when you use a ruler you can measure to the nearest mm .		1 1 1	AO3
01.4	$\left(\right.$ final velocity ${ }^{12}-(\text { initial velocity })^{2}=2 \times$ acceleration \times distance $(2.987)^{2}-(1.376)^{2}=2 \times$ acceleration $\times 0.30$ acceleration $=\frac{2.987^{2}-1.376^{2}}{2 \times 0.3}$ $=11.715$ $=11.7\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	allow symbols answer given to two significant figures accept 11.7 with no working for the two calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2
01.5	measured value is more than calculated value because card may not have fallen completely vertically and so distance travelled is actually greater than 30 cm		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
02.1	typical speeds: walking $-1.5 \mathrm{~m} / \mathrm{s}$ cycling $-6 \mathrm{~m} / \mathrm{s}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.5.6.1.2 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	AO / Specification reference
02.2	distance $=$ speed \times time		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.6.1.2 } \end{gathered}$
02.3	$\begin{aligned} & 1500=1.5 \times \text { time } \\ & \text { time } A=\frac{1500}{1.5} \\ & =1000 \mathrm{~s} \\ & \text { time } B=\frac{1500}{6}=250 \mathrm{~s} \\ & \text { difference }=1000-250=750 \mathrm{~s} \\ & =12.5 \text { minutes } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
02.4	$\begin{aligned} & \text { average speed }=\frac{\text { total distance }}{\text { total time }} \\ & \text { you do not need to travel at the fastest speed for the whole time } \end{aligned}$	or words to that effect	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
03.1	plots are: $(0,0),(2,2),(4,5),(6,8),(8,14),(10,20),(12,22)$ curved line of best fit		2	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.4 } \end{gathered}$
03.2	$\begin{aligned} & \text { calculation of } \frac{\text { change in time }}{\text { change in distance }} \\ & =\frac{8-2}{6-2} \\ & =1.5 \mathrm{~m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.6.1.4 } \end{gathered}$
03.3	the student moves with a steady speed higher than $1.5 \mathrm{~m} / \mathrm{s}$ for about 4 seconds then slows down		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} \\ \text { 4.5.6.1.4 } \end{gathered}$

AQA GCSE Physics

Practice answers

	Answers	Extra information	Mark	AO / Specification reference
04.1	car A the gradient of the line is greatest/steepest line		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.4 } \end{gathered}$
04.2	$\operatorname{car} \mathrm{C}$ the car is horizontal between 4 and 7 mins		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.4 } \end{gathered}$
04.3	$\operatorname{car} \mathrm{C}$ the line is curved/not a straight line/not a constant gradient or slope after 7 mins		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \mathrm{AO3} \\ \text { 4.5.6.1.4 } \end{gathered}$
04.4	car A it travelled the same distance in the shortest time		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.4 } \end{gathered}$
04.5	$\begin{aligned} & \text { correct time }=4 \text { minutes }=240 \text { seconds, } \\ & \text { correct distance }=7.5 \mathrm{~km}=7500 \mathrm{~m} \\ & \text { distance }=\text { speed } \times \text { time } \\ & 7500=\text { speed } \times 240 \\ & \text { speed }=\frac{7500}{240} \mathrm{~s} \\ & =31.25 \mathrm{~m} / \mathrm{s} \end{aligned}$	accept 31.255 with no working for the two calculation marks	1 1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.6.1.4 } \end{gathered}$
05.1	$0.6 \mathrm{~m} / \mathrm{s}$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{gathered} \text { AO / } \\ \text { Specification } \\ \text { reference } \end{gathered}$
05.2	area of each rectangle $=0.2 \times 0.1=0.02 \mathrm{~m}$ 36 rectangles under straight line section 18 under curve (counting whole and partial rectangles) total of $36+18=54$ rectangles distance $=54 \times 0.02=1.08 \mathrm{~m}$	allow 0.9 to 1.15 m	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .6 .1 .5 \end{gathered}$
05.3	one mark for line with higher gradient one mark for having that line take longer to reach a horizontal line one line for that line stopping sooner the weight is bigger, so the initial acceleration is bigger the helicopter takes longer to reach terminal velocity the area under each graph is the same.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ \text { 4.5.6.1.5 } \end{gathered}$
05.4	there is a drag force that is proportional to the velocity/as velocity increases, air resistance increases or the helicopter is spinning	accept any sensible suggestion	1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
06	Level 3: Well organized answer with descriptions of reasons for calculations. Appropriate units given in all calculations. At least one assumption with effect on calculation given		5-6	AO1 AO2 AO3
	Level 2: Some relevant calculations, and difference in time calculated, but unit conversions missing or unhelpful. Some comment about speeds not being constant.		3-4	4.5.6.1.2
	Level 1: Some relevant calculations completed, but unit conversions may be missing, and no explanation of method. No comment about assumptions.		1-2	
	No relevant comment.		0	

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
	Indicative content: - suitable value for typical speeds: car - 50 mph distance $=$ speed \times time $20=50 \times$ time time $=\frac{20}{50}=\frac{2}{5}$ hour $=2 \times \frac{60}{5}=24$ minutes bicycle-15 mph method as above: 80 minutes you arrive $80-24=56$ minutes earlier by car train - 80 mph method as above: 15 minutes so fastest by train - assuming he travels at that speed for the entirety of the journey - he will not do this, if faster than assumed speed he will arrive quicker and if slower journey times would be longer - for most journeys there are multiple parts travelling at different speeds - train has ignored the time taken to get to and from the station, this should be added on	allow suitable values for typical speeds in m / s and times calculated with distance of 20 miles converted to metres		
07.1	$\begin{aligned} & \text { distance travelled }=2 \times 20200000=40400000 \mathrm{~m} \\ & \text { distance }=\text { speed } \times \text { time } \\ & 40400000 \mathrm{~m}=300000000 \times \text { time } \\ & \text { time }=\frac{40400000}{300000000} \\ & =0.135 \mathrm{~s} \end{aligned}$	distance double that given in question	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .6 .1 .2 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
07.2	$\begin{aligned} & \text { convert } 55 \mathrm{mph} \text { to } \mathrm{m} / \mathrm{s}: 55 \mathrm{mph}=55 \times \frac{1609}{3600} \\ & =24.6 \mathrm{~m} / \mathrm{s}(25 \mathrm{~m} / \mathrm{s}) \\ & \text { distance }=\text { speed } \times \text { time } \\ & =24.6 \mathrm{~m} / \mathrm{s} \times 0.135 \mathrm{~s} \\ & =3.3 \mathrm{~m} \end{aligned}$	allow 3.2 to 3.3 m for use of 0.1 s	1 1 1	$\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .1 .2 \end{gathered}$
07.3	systematic the same time difference is introduced each time (though the distance will depend on the speed that distance is predictable)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
07.4	work out two positions work out the time (between the two positions) finds the distance between the two positions and the time to work out the speed		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.5 .6 .1 .3 \end{gathered}$
07.5	(the satellite is moving at a constant speed but) its direction is constantly changing its velocity is constantly changing, (so it is accelerating)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.3 } \end{gathered}$
08.1	gravity		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$
08.2	$\begin{aligned} & \text { weight = mass } \times \text { gravitational field strength } \\ & =10 \times 10^{3} \times 9.8 \\ & =9.8 \times 10^{4} \mathrm{~N} \text { or } 98000 \mathrm{~N} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.1.3 } \end{gathered}$
08.3	$\begin{aligned} & \text { work done }=\text { force } \times \text { distance } \\ & =9.8 \times 10^{4} \times 2 \\ & =1.96 \times 10^{5}\left(2.0 \times 10^{5}\right) \mathrm{J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1 AO2 4.5.2

AQA GCSE Physics

Practice answers

			Extra information	Answers

AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
09.3	use of initial linear section of the graph/line of best fit (ignoring outlier) $4.5 \mathrm{~N}=$ spring constant $\times 0.052 \mathrm{~m}$ $\begin{aligned} & \text { spring constant }=\frac{4.5}{0.0052} \\ & =87 \mathrm{~N} / \mathrm{m}(\text { or } 0.87 \mathrm{~N} / \mathrm{cm}) \end{aligned}$	allow tolerance of $+/-10(\mathrm{~N} / \mathrm{m})$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
09.4	That is where the line starts to curve/bend/is no longer a straight line/as F is no longer proportional to e		1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
10.1	$\text { acceleration }=\frac{\text { final velocity-initial velocity }}{\text { time }}$	allow $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$ or acceleration $=$ changeinvelocity time	1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.6.1.5 } \end{gathered}$
10.2	$\begin{aligned} & \text { acceleration }=\frac{7.12-1.12}{1.25} \\ & =4.8 \\ & \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	accept 4.8 with no working for two calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$
10.3	the acceleration due to gravity $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ratio $=4.8: 9.8=1: 2$ (2.04)	accept 2:1 with reverse working shown	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
10.4	one mark for two straight line sections with correct overall shape not starting at origin one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating and any two from: - the acceleration of the trolley down the ramp is bigger than the deceleration (because the change in velocity takes a longer time) - the gradient when accelerating is larger than decelerating - the acceleration part shows a positive gradient, and the deceleration shows a negative gradient.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ 2	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
11.1	pressure increases as you increase the depth (total weight of the air plus) the total weight of the water over a given surface area	allow $P=h \times \rho \times g$, larger depth $\text { (h) = larger } P$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ 4.5 .5 .2 \end{gathered}$
11.2	```change in pressure \(=1318250-101325=1216925 \mathrm{~Pa}\) change in pressure \(=\) density \(\times\) gravitational field strength \(x\) change in height \(1216925=1000 \times 9.8 \times\) change in height change in height \(=\frac{1216925}{9800}\) \(=124 \mathrm{~m}\).```		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.5.2 } \\ 4.5 .5 .1 .2 \end{gathered}$
12.1	the first fuel cell (the acceleration is bigger so) the kinetic energy store is filling at a faster rate		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.5 } \\ \text { 4.1.1.1 } \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
12.2	$\begin{aligned} & \text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }} \\ & =\frac{50-30}{4} \\ & =5 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$
12.3	$10 \mathrm{~s}$ area under graph $=$ distance travelled, maximum area is at 10 s or when it is a maximum distance from the ground its velocity is zero/it has stopped momentarily		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
12.4	when it hits ground, the distance travelled upwards = distance travelled downwards distance = area under graph, the area before 10 seconds is greater than the area after 10 seconds		1 1	$\begin{gathered} \text { AO3 } \\ 4.5 .6 .1 .5 \end{gathered}$
13.1	light gates at top surface and the height where she wishes to measure		1	AO2
13.2	$\begin{aligned} & \left(\text { final velocity }{ }^{12}-(\text { (initial velocity })^{2}=2 \times \text { acceleration } \times\right. \text { distance } \\ & (0.013)^{2}-(0.035)^{2}=2 \times \text { acceleration }^{2} 0.30 \\ & \text { acceleration }=\frac{0.013^{2}-0.035^{2}}{2 \times 0.30} \\ & =-0.00176 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ the sign of the acceleration is negative because the object is slowing down.	accept -0.00176 with no working for two calculation marks negative sign justification	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.5.6.1.5 } \end{gathered}$
13.3	use several light gates placed equal distances apart to measure the velocity of the modelling clay at different points if the velocity does not change then it has reached terminal velocity		1 1	$\begin{gathered} \text { AO1 } \\ \text { AO3 } \\ 4.5 .6 .1 .5 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
13.4	as the density of the liquid increases the distance decreases bigger density means bigger drag force bigger negative acceleration/The speed changes over a smaller distance		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
14.1	distance and speed are scalars		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.1 } \\ \text { 4.5.6.1.1 } \\ \text { 4.5.6.1.3 } \end{gathered}$
14.2	$\begin{aligned} & 20 \mathrm{~km}-10 \mathrm{~km}=10 \mathrm{~km} \\ & \text { south } \end{aligned}$	accept 10 with no working for one calculation mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .1 .1 \end{gathered}$
14.3	displacement is the position relative to a particular point/takes direction into account distance is the total distance that you move, which may not be the same as displacement if you change direction/does not take direction into account		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.1 } \end{gathered}$
14.4	velocity the cyclist is giving both a magnitude and a direction		1	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$

