

	Answers	Extra information	Mark	AO / Specification reference
01.1	hold the ruler as close to the centre of the light gates as possible, with the ruler vertical make the measurement by looking directly at/at 90° to the ruler.		1	AO1 AO2
01.2	suitable suggestion e.g., the card was dropped from different heights above light gate 1		1	AO3 4.5.6.1.4
01.3	the light gates use a light beam so produces a measurement of time, and the computer calculates velocity, so velocity measurements are more precise/more significant figures		1	AO3
	the data logger can measure to $\frac{1}{1000}$ second/1 ms		1	
	1000 when you use a ruler you can measure to the nearest mm.		1	
01.4	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance $(2.987)^2 - (1.376)^2 = 2 \times acceleration \times 0.30$ acceleration = $\frac{2.987^2 - 1.376^2}{2 \times 0.3}$ = 11.715 = 11.7 (m/s ²)	allow symbols answer given to two significant figures accept 11.7 with no working for the two calculation marks	1 1 1	AO2
01.5	measured value is more than calculated value because card may not have fallen completely vertically and so distance travelled is actually greater than 30 cm		1	AO3 4.5.6.1.5
02.1	typical speeds: walking – 1.5 m/s cycling – 6 m/s		1	AO1 4.5.6.1.2
			1	

	Answers	Extra information	Mark	AO / Specification reference
02.2	distance = speed × time		1	AO1 4.5.6.1.2
02.3	$1500 = 1.5 \times \text{time}$ time A = $\frac{1500}{1.5}$ = 1000 s time B = $\frac{1500}{6}$ = 250 s difference = 1000 - 250 = 750 s = 12.5 minutes		1 1 1 1 1	AO1 AO2 4.5.6.1.2
02.4	average speed = $\frac{\text{total distance}}{\text{total time}}$ you do not need to travel at the fastest speed for the whole time	or words to that effect	1 1	AO1 AO2 4.5.6.1.2
03.1	plots are: (0,0), (2,2), (4,5), (6,8), (8,14), (10,20), (12,22) curved line of best fit		2	AO2 4.5.6.1.4
03.2	calculation of $\frac{\text{change in time}}{\text{change in distance}}$ = $\frac{8-2}{6-2}$ = 1.5 m/s		1 1 1	AO2 4.5.6.1.4
03.3	the student moves with a steady speed higher than 1.5 m/s for about 4 seconds then slows down		1 1	AO3 4.5.6.1.4

	Answers	Extra information	Mark	AO / Specification reference
04.1	car A		1	AO2
	the gradient of the line is greatest/steepest line		1	AO3
				4.5.6.1.4
04.2	car C		1	AO2
	the car is horizontal between 4 and 7 mins		1	AO3
				4.5.6.1.4
04.3	car C		1	AO2
	the line is curved/not a straight line/not a constant gradient or slope after 7 mins		1	AO3
				4.5.6.1.4
04.4	car A		1	AO2
	it travelled the same distance in the shortest time		1	AO3
				4.5.6.1.4
04.5	correct time = 4 minutes = 240 seconds,	accept 31.255 with no working	1	AO2
	correct distance = 7.5 km = 7500 m	for the two calculation marks	1	4.5.6.1.4
	distance = speed × time			
	7500 = speed × 240		1	
	speed = $\frac{7500}{240}$ s			
			1	
	= 31.25 m/s			
05.1	0.6 m/s		1	AO2
				4.5.6.1.5

	Answers	Extra information	Mark	AO / Specification reference
05.2	area of each rectangle = 0.2 × 0.1 = 0.02 m 36 rectangles under straight line section	allow 0.9 to 1.15 m	1	AO2 4.5.6.1.5
	18 under curve (counting whole and partial rectangles) total of 36 + 18 = 54 rectangles		1	
	distance = 54 × 0.02 = 1.08 m		1	
05.3	one mark for line with higher gradient		1	AO3
	one mark for having that line take longer to reach a horizontal line		1	4.5.6.1.5
	one line for that line stopping sooner		1	
	the weight is bigger, so the initial acceleration is bigger		1	
	the helicopter takes longer to reach terminal velocity		1	
	the area under each graph is the same.		1	
05.4	there is a drag force that is proportional to the velocity/as velocity increases, air resistance increases	accept any sensible suggestion	1	AO3 4.5.6.1.5
	or			4.5.0.1.5
	the helicopter is spinning			
06	Level 3 : Well organized answer with descriptions of reasons for calculations. Appropriate units given in all calculations. At least one assumption with effect		5-6	A01
	on calculation given			AO2 AO3
	Level 2: Some relevant calculations, and difference in time calculated, but unit		3-4	4.5.6.1.2
	conversions missing or unhelpful. Some comment about speeds not being constant.			
	Level 1: Some relevant calculations completed, but unit conversions may be		1-2	
	missing, and no explanation of method. No comment about assumptions.			
	No relevant comment.		0	

	Answers	Extra information	Mark	AO / Specification reference
	Indicative content: • suitable value for typical speeds: • car - 50 mph > distance = speed × time > 20 = 50 × time > time = $\frac{20}{50} = \frac{2}{5}$ hour = 2 × $\frac{60}{5}$ = 24 minutes • bicycle - 15 mph > method as above: 80 minutes > you arrive 80 - 24 = 56 minutes earlier by car • train - 80 mph > method as above: 15 minutes so fastest by train • assuming he travels at that speed for the entirety of the journey • he will not do this, if faster than assumed speed he will arrive quicker and if slower journey times would be longer • for most journeys there are multiple parts travelling at different speeds • train has ignored the time taken to get to and from the station, this should be added on	allow suitable values for typical speeds in m/s and times calculated with distance of 20 miles converted to metres		
07.1	distance travelled = 2 × 20 200 000 = 40 400 000 m distance = speed × time 40 400 000 m = 300 000 000 × time time = $\frac{40400000}{30000000}$ = 0.135 s	distance double that given in question	1 1 1	AO1 AO2 4.5.6.1.2

	Answers	Extra information	Mark	AO / Specification reference
07.2	convert 55 mph to m/s: 55 mph = 55 $\times \frac{1609}{3600}$ = 24.6 m/s (25 m/s)	allow 3.2 to 3.3 m for use of 0.1 s	1	AO2 4.5.6.1.2
	distance = speed × time = 24.6 m/s × 0.135 s = 3.3 m		1	
07.3	systematic the same time difference is introduced each time (though the distance will depend on the speed that distance is predictable)		1 1	AO3
07.4	work out two positions work out the time (between the two positions) finds the distance between the two positions and the time to work out the speed		1 1 1	AO3 4.5.6.1.3
07.5	(the satellite is moving at a constant speed but) its direction is constantly changing its velocity is constantly changing, (so it is accelerating)		1	AO3 4.5.6.1.3
08.1	gravity		1	AO1 4.5.1.3
08.2	weight = mass x gravitational field strength = 10x10 ³ x 9.8 = 9.8x10 ⁴ N or 98 000 N		1 1 1	AO1 AO2 4.5.1.3
08.3	work done = force x distance = $9.8 \times 10^4 \times 2$ = $1.96 \times 10^5 (2.0 \times 10^5) \text{ J}$		1 1 1	AO1 AO2 4.5.2

	Answers	Extra information	Mark	AO / Specification reference
08.4	draw a scale diagram		1	AO1
	draw two arrows at 90 degrees, one along the slope and one perpendicular to		1	AO2
	the slope			4.5.1.4
	use the scale to work out the length		1	
	alternative answer based on my question:			
	draw two arrows at 90 degrees			
	one arrow along the slope and one perpendicular to the slope			
	use the parallelogram rule to work out the length			
08.5	force needed to pull block up slope= 3000 + 49 000 = 52 000N		1	AO1
	distance = 4 m			AO2
	work = force x distance			4.5.2
	= 52 000 x 4 m		1	
	= 208 000 J		1	
08.6	the force needed along the slope is smaller than lifting it vertically against gravity	do not accept 'easier' without	1	AO2
		some reference to the sie of the		4.5.2
		force		
09.1	the point at 4.2 cm/4.4 N		1	AO3
				4.5.3
09.2	force = spring constant × extension		1	AO1
				4.5.3

	Answers	Extra information	Mark	AO / Specification reference
09.3	use of initial linear section of the graph/line of best fit (ignoring outlier)	allow tolerance of +/- 10 (N/m)	1	AO2
	4.5 N = spring constant x 0.052 m		1	4.5.3
	spring constant = $\frac{4.5}{0.0052}$		1	
	0.0052 = 87 N/m (or 0.87 N/cm)		1	
09.4	That is where the line starts to curve/bend/is no longer a straight line/as F is no		1	A01
	longer proportional to e			4.5.3
10.1	$acceleration = \frac{\text{final velocity-initial velocity}}{1}$	allow a = $\frac{v - u}{w}$ or acceleration =	1	A01
	time	allow a = or acceleration =		4.5.6.1.5
		changeinvelocity		
		time		
10.2	acceleration = $\frac{7.12 - 1.12}{2}$	accept 4.8 with no working for	1	AO1
	1.25	two calculation marks	1	AO2
	= 4.8		1	4.5.6.1.5
	m/s ²			
10.3	the acceleration due to gravity 9.8 m/s ²	accept 2:1 with reverse working	1	AO1
	ratio = 4.8:9.8 = 1:2 (2.04)	shown	1	AO2
				4.5.6.1.5

	Answers	Extra information	Mark	AO / Specification reference
10.4	one mark for two straight line sections with correct overall shape not starting at		1	AO2
	origin		1	AO3
	one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating		1	4.5.6.1.5
	and any two from:		2	
	• the acceleration of the trolley down the ramp is bigger than the deceleration (because the change in velocity takes a longer time)			
	the gradient when accelerating is larger than decelerating			
	• the acceleration part shows a positive gradient, and the deceleration shows a negative gradient.			
11.1	pressure increases as you increase the depth	allow P = h x ρ x g, larger depth	1	A01
	(total weight of the air plus) the total weight of the water over a given surface area	(h) = larger P	1	4.5.5.2
11.2	change in pressure = 1 318 250 - 101 325 = 1 216 925 Pa		1	AO2
	change in pressure = density x gravitational field strength x change in height			4.5.5.2
	1 216 925 = 1000 x 9.8 x change in height		1	4.5.5.1.2
	change in height = $\frac{1216925}{2000}$		1	
	9800 = 124 m.		1	
12.1	the first fuel cell		1	AO2
	(the acceleration is bigger so) the kinetic energy store is filling at a faster rate		1	A03
				4.5.6.1.5
				4.1.1.1

	Answers	Extra information	Mark	AO / Specification reference
12.2	acceleration = $\frac{\text{change in velocity}}{\frac{1}{2}}$			AO2
	time taken		1	4.5.6.1.5
	$=\frac{50-30}{100}$		1	
	4			
	$= 5 \text{ m/s}^2$			
12.3	10 s		1	AO2
	area under graph = distance travelled, maximum area is at 10 s		1	AO3
	or when it is a maximum distance from the ground its velocity is zero/it has stopped momentarily			4.5.6.1.5
12.4	when it hits ground, the distance travelled upwards = distance travelled		1	AO3
	downwards distance = area under graph, the area before 10 seconds is greater than the area after 10 seconds		1	4.5.6.1.5
13.1	light gates at top surface and the height where she wishes to measure		1	AO2
13.2	$(final velocity)^2$ - $(initial velocity)^2$ = 2 × acceleration × distance	accept -0.00 176 with no	1	AO2
	$(0.013)^2 - (0.035)^2 = 2 \times \text{acceleration} \times 0.30$	working for two calculation	1	AO3
	acceleration = $\frac{0.013^2 - 0.035^2}{2 \times 0.30}$	marks	1	4.5.6.1.5
	$= -0.00 \ 176 \ m/s^2$	negative sign justification	1	
	the sign of the acceleration is negative because the object is slowing down.			
13.3	use several light gates placed equal distances apart to measure the velocity of		1	AO1
	the modelling clay at different points			AO3
	if the velocity does not change then it has reached terminal velocity		1	4.5.6.1.5

	Answers	Extra information	Mark	AO / Specification reference
13.4	as the density of the liquid increases the distance decreases		1	AO3
	bigger density means bigger drag force		1	4.5.6.1.5
	bigger negative acceleration/The speed changes over a smaller distance		1	
14.1	distance and speed are scalars		1	AO1
				4.5.1.1
				4.5.6.1.1
				4.5.6.1.3
14.2	20 km - 10 km = 10 km	accept 10 with no working for	1	AO2
	south	one calculation mark	1	4.5.6.1.1
14.3	displacement is the position relative to a particular point/takes direction into		1	A01
	account		1	AO2
	distance is the total distance that you move, which may not be the same as			4.5.6.1.1
	displacement if you change direction/does not take direction into account			
14.4	velocity		1	AO1
	the cyclist is giving both a magnitude and a direction		1	AO2