AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
01.1	$\text { pressure }=\frac{\text { force }}{\text { area }}$	$\text { accept } P=\frac{F}{A}$	1	$\begin{gathered} \text { AO1 } \\ 4.5 .5 .1 .1 \end{gathered}$
01.2	$\begin{aligned} & \text { pressure }=\frac{2000}{0.02} \\ &=100000 \\ & \text { Pa or } \mathrm{N} / \mathrm{m}^{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.5.1.1 } \end{gathered}$
01.3	at right angles/perpendicular to the wall		1	$\begin{gathered} \text { AO1 } \\ 4.5 .5 .1 .1 \end{gathered}$
01.4	the direction of the force is the same		1	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .5 .1 .1 \end{gathered}$
02.1	the force of the Earth/weight/gravity the force of the water/upthrust	do not accept 'acceleration due to gravity' or 'g'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .5 .1 .2 \end{gathered}$
02.2	the upthrust balances/is equal to the weight	accept 'no resultant force' do not accept 'no forces acting'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 4.5 .5 .1 .2 \end{gathered}$
02.3	any three from: - (as the child adds sand) the boat floats deeper in the water/more of the boat is submerged in the water - the pressure exerted by the water on the boat increases with depth (so) the upthrust increases (as the area is the same, force \propto pressure) - the boat still floats because the larger weight is balanced by the larger upthrust	or words to that effect one point per correct answer up to a maximum of three points	3	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.5.1.2 } \end{gathered}$

[^0]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
03.1	X, Y, W	one mark for X before Y one mark for Y before W	2	$\begin{gathered} \mathrm{AO} 3 \\ 4.5 .5 .1 .2 \end{gathered}$
03.2	the weight of Y is greater Y moves/floats further into the liquid before the pressure is big enough for the upthrust to balance the weight		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.5 .5 .1 .2 \end{gathered}$
03.3	$\text { pressure }=\frac{\text { force }}{\text { area }}$	$\text { accept } P=\frac{F}{A}$	1	A01
03.4	$\begin{aligned} & \text { surface area }=0.01 \times 0.01=1 \times 10^{-4} \mathrm{~m}^{2} \\ & \text { pressure }=\frac{0.015}{1 \times 10^{-4}} \\ & =150 \mathrm{~N} / \mathrm{m}^{2} \text { or } \mathrm{Pa} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$
04.1	centre of mass	accept centre of gravity	1	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.3 } \end{gathered}$
04.2	appropriate diagram with scale given clear identification of vertical component $2.6 \mathrm{~N}$	allow $2.2-3.0 \mathrm{~N}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .4 \end{gathered}$
04.3	2.6 N	allow answers using range 2.2 3.0 N from last question	1	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .4 \end{gathered}$
04.4	appropriate diagram with scale given clear identification of resultant of two forces using a parallelogram $3.1 \mathrm{~N}$	allow $2.7-3.5 \mathrm{~N}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .4 \end{gathered}$

[^1]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
05.1	independent - volume of water in the bottle dependent - distance travelled by jet	accept 'height of water column'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .5 .1 .2 \end{gathered}$
05.2	a graph that shows increasing volume produces increasing distance as the volume/height decreases, the pressure exerted by the column decreases so the force on the water is less so the jet travels a smaller distance	allow reverse argument	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.5.1.2 } \end{gathered}$
05.3	the ruler does not start in the right place move the ruler so that zero is next to the edge of the bottle where the hole is.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
06.1	$\begin{aligned} & \text { pressure increase }=\text { depth } \times \text { density } \times \text { gravitational field strength } \\ & =10 \times 1 \times 10^{3} \times 9.8 \\ & =98000 \mathrm{~Pa} \\ & =\frac{98000}{1000} \mathrm{kPa}=98 \mathrm{kPa} \text { (approx. } 100 \mathrm{kPa} \text {) } \end{aligned}$	accept $\mathrm{P}=\mathrm{h} \times \rho \times \mathrm{g}$ must explicitly convert to kPa	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .5 .1 .2 \end{gathered}$
06.2	water pressure $=405 \mathrm{kPa}-101 \mathrm{kPa}=304 \mathrm{kPa}$ using diver's rule, $\frac{304}{100}=3.040$ $3.04 \times 10=30.4 \mathrm{~m}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .5 \end{aligned}$
07.1	downwards force - interaction of the ball with the Earth upwards force - interaction of the ball with the ground		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .2 \end{gathered}$
07.2	work $=$ force \times distance	allow $\mathrm{W}=\mathrm{Fxd}$	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .2 \end{aligned}$

[^2]
AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
07.3	$\begin{aligned} & 19=\text { friction } \times 4.6 \\ & \text { friction }=\frac{19}{4.6} \\ & =4.13 \\ & =4.1 \mathrm{~N} \text { (to two significant figures) } \end{aligned}$	answer to two significant figures	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .2 \end{aligned}$
07.4	on ball, arrow downwards labelled weight arrow horizontally to left labelled air resistance		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 4.5 .1 .2 \\ 4.5 .1 .4 \end{gathered}$
07.5	the force of the ground on the ball/reaction force		1	AO2 4.5.1.2 4.5.1.4
08.1	air molecules collide with a surface and produce a force $\text { pressure }=\frac{\text { force }}{\text { surface area }}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.5 .5 .2 \end{gathered}$
08.2	the atmospheric pressure increases		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.5.2 } \end{gathered}$
08.3	no there are more air molecules (and more weight) above (the phone) so the pressure is greater		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .5 .2 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
09	sketch graph showing smooth curve decreasing pressure with height approximately halving every 5 km labelled axes at higher altitudes there is less weight of air above that point and so less pressure is exerted.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$
10.1	weight $=$ mass \times gravitational field strength	accept $\mathrm{W}=\mathrm{mg}$	1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$
10.2	$\begin{aligned} & 80 \times 9.8 \\ & =784 \mathrm{~N} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.3 } \end{gathered}$
10.3	$\begin{aligned} & \text { force on each spring }=\frac{784}{4} \\ & =196 \mathrm{~N} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
10.4	$\begin{aligned} & \text { force }=\text { spring constant } \times \text { extension } \\ & 3.4 \mathrm{~cm}=0.034 \mathrm{~m} \\ & 196=\text { spring constant } \times 0.034 \\ & \text { spring constant }=\frac{196}{0.034} \\ & =5765 \mathrm{~N} / \mathrm{kg} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
10.5	the same the spring has not deformed elastically		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
11.1	$\begin{aligned} & \text { pressure }=\text { height } \times \text { density } \times \text { gravitational field strength } \\ & =1 \times 10^{3} \times 9.8 \\ & =9800 \mathrm{~Pa} \end{aligned}$	accept $\mathrm{P}=\mathrm{h} \times \rho \times \mathrm{g}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .5 .1 .2 \end{gathered}$

AQA GCSE Physics

	Answers	Extra information	Mark	\qquad
11.2	the pressure gauge reads the pressure due to the column of water and the column of air above it)atmospheic pressure)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \mathrm{AO2} \\ \text { 4.5.5.1.2 } \end{gathered}$
11.3	pressure is proportional to density if the salt content is higher, the density is higher if the density is higher, the pressure will be higher		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.5.1.2 } \end{gathered}$
12.1	any three from: - (if the bag is sealed at the bottom of the mountain) the gas inside the bag will be at atmospheric pressure - as he goes up the mountain the atmospheric pressure decreases /will be less than the pressure of the gas inside the bag (so the volume increases) - pressure is inversely proportional to volume - (so) if the volume increases by a factor of three, the pressure has decreased by a factor of three	one mark for each correct answer up to a maximum of three marks	3	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .5 .1 .2 \end{gathered}$
12.2	$\begin{aligned} & \frac{100}{3} \\ & =33 \mathrm{kPa} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO2
12.3	if the density decreases the pressure that you calculate at a given height is actually less than that predicted assuming density is constant		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.5.1.2 } \end{gathered}$

[^3]
[^0]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original

[^1]: Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^2]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

[^3]: © Oxford University Press www.oxfordsecondary.co.uk
 This resource sheet may have been changed from the original.

