AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	hold the ruler as close to the centre of the light gates as possible, with the ruler vertical make the measurement by looking directly at/at 90° to the ruler.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$
01.2	suitable suggestion e.g., the card was dropped from different heights above light gate 1		1	$\begin{gathered} \text { AO3 } \\ 4.5 .6 .1 .4 \end{gathered}$
01.3	the light gates use a light beam so produces a measurement of time, and the computer calculates velocity, so velocity measurements are more precise/more significant figures the data logger can measure to $\frac{1}{1000}$ second/1 ms when you use a ruler, you can measure to the nearest mm		1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
01.4	(final velocity ${ }^{12}-$ (initial velocity) $^{2}=2 \times$ acceleration \times distance $(2.987)^{2}-(1.376)^{2}=2 \times$ acceleration $\times 0.30$ $\text { acceleration }=\frac{2.987^{2}-1.376^{2}}{2 \times 0.3}$ $\begin{aligned} & =11.715 \\ & =11.7\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	allow symbols answer given to two significant figures accept 11.7 with no working for the two calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2
01.5	measured value is more than calculated value because card may not have fallen completely vertically and so distance travelled is actually greater than 30 cm		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
02.1	$\begin{aligned} & \text { walking }-1.5 \mathrm{~m} / \mathrm{s} \\ & \text { cycling }-6 \mathrm{~m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ 4.5 .6 .1 .2 \end{gathered}$

Question	Answers	Extra information	Mark	\qquad
02.2	distance $=$ speed \times time		1	$\begin{gathered} \text { AO1 } \\ 4.5 .6 .1 .2 \end{gathered}$
02.3	$\begin{aligned} & 1500=1.5 \times \text { time } \\ & \text { time } A=\frac{1500}{1.5} \\ & =1000 \mathrm{~s} \\ & \text { time } B=\frac{1500}{6}=250 \mathrm{~s} \\ & \text { difference }=1000-250=750 \mathrm{~s} \\ & =12.5 \text { minutes } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.6.1.2 } \end{gathered}$
02.4	$\text { average speed }=\frac{\text { total distance }}{\text { total time }}$ you do not need to travel at the fastest speed for the whole time		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
03.1	plots are: $(0,0),(2,2),(4,5),(6,8),(8,14),(10,20),(12,22)$ curved line of best fit	two points for points plotted correctly	2	$\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .1 .4 \end{gathered}$
03.2	evidence of tangent drawn at 4 seconds calculation of change in distance/change in time $\begin{aligned} & =\frac{8-2}{6-2} \\ & =1.5 \mathrm{~m} / \mathrm{s} \end{aligned}$	accept values from one or two m / s	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .1 .4 \end{gathered}$
03.3	the student moves with a steady speed higher than $1.5 \mathrm{~m} / \mathrm{s}$ for about 4 seconds then slows down		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ 4.5 .6 .1 .4 \end{gathered}$

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
04.1	car A the gradient of the line is greatest/steepest line		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \mathrm{AO3} \\ \text { 4.5.6.1.4 } \end{gathered}$
04.2	car C the line is horizontal between four and seven minutes		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \mathrm{AO} 3 \\ \text { 4.5.6.1.4 } \end{gathered}$
04.3	car C the line is curved/not a straight line/not a constant gradient a slope after seven minutes		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.5.6.1.4 } \end{gathered}$
04.4	car A it travelled the same distance in the shortest time		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { AO3 } \\ \text { 4.5.6.1.4 } \end{gathered}$
04.5	$\begin{aligned} & \text { correct time }=4 \text { minutes }=240 \text { seconds, } \\ & \text { correct distance }=7.5 \mathrm{~km}=7500 \mathrm{~m} \\ & \text { distance }=\text { speed } \times \text { time } \\ & 7500=\text { speed } \times 240 \\ & \text { speed }=\frac{7500}{240} \\ & =31(31.25 \mathrm{~m} / \mathrm{s}) \end{aligned}$	reading values off graph and converting	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.4 } \end{gathered}$
05.1	it is possible to find the velocity at a range of different times/lots of times, compared to light gates which measure two velocities		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	$A B$ shows decreasing acceleration $B C$ shows constant acceleration CD shows zero acceleration/constant speed/constant velocity		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 4.5.6.1.5 } \end{gathered}$
05.3	$\begin{aligned} & \text { initial (greatest acceleration) }=\frac{\text { change in velocity }}{\text { time taken }} \\ & =\frac{0.5-0}{0.2} \\ & =2.5 \mathrm{~m} / \mathrm{s}^{2} . \end{aligned}$	accept 2.5 with no working for the two calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$
05.4	```distance travelled = area under the graph by counting squares one square =0.5 < 0.5 = 0.25 m number of squares=38 total distance = 38\times0.25=9.5 m```	allow answers between nine and ten m	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$
06	Level 3: Well organized answer with descriptions of reasons for calculations. Appropriate units given in all calculations. At least one assumption with effect on calculation given.		5-6	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \\ & \text { AO3 } \end{aligned}$
	Level 2: Some relevant calculations, and difference in time calculated, but unit conversions missing or unhelpful. Some comment about speeds not being constant.		3-4	4.5.61.2
	Level 1: Some relevant calculations completed, but unit conversions may be missing, and no explanation of method. No comment about assumptions.		1-2	
	No relevant comment.		0	

Question	Answers	Extra information	Mark	AO / Specification reference
	Indicative content: $>$ suitable value for typical speeds: $>$ car -50 mph $>$ distance $=$ speed \times time >20 miles $=50 \mathrm{mph} \times$ time $>$ time $=\frac{20}{50}=\frac{2}{5}$ hour $=2 \times \frac{60}{5}=24$ minutes $>$ bicycle -15 mph $>$ method as above: 80 minutes $>$ you arrive 80-24 = 56 minutes earlier $>$ train -80 mph $>$ method as above: 15 minutes $>$ assuming he travels at that speed for the entirety of the journey $>$ he will not do this, if faster than assumed speed he will arrive quicker and if slower journey times would be longer $>$ for most journeys there are multiple parts travelling at different speeds $>$ train has ignored the time taken to get to and from the station, this should be added on	allow suitable values for typical speeds in m / s and times calculated with distance of 20 miles converted to metres		
07.1	$\begin{aligned} & \text { distance travelled }=2 \times 20200000=40400000 \\ & \text { distance }=\text { speed } \times \text { time } \\ & 40400000=300000000 \times \text { time } \\ & \text { time }=\frac{40400000}{300000000} \\ & =0.13 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$

Question	Answers	Extra information	Mark	$\begin{gathered} \text { AO / } \\ \text { Specification } \\ \text { reference } \end{gathered}$
07.2	$\begin{aligned} & \text { convert } 55 \mathrm{mph} \text { to } \mathrm{m} / \mathrm{s}: 55 \mathrm{mph}=55 \times \frac{1609}{3600} \\ & =24.6 \mathrm{~m} / \mathrm{s}(25 \mathrm{~m} / \mathrm{s}) \\ & \text { distance }=\mathrm{speed} \times \text { time } \\ & =24.6 \times 0.13 \\ & =3.20 \mathrm{~m}(\text { if } 25 \mathrm{~m} / \mathrm{s} \text { and } 0.1 \mathrm{~s} \text { used, then } 3.3 \mathrm{~m} \text {) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.6.1.2 } \end{gathered}$
07.3	systematic the same time difference is introduced each time (though the distance will depend on the speed that distance is predictable)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
07.4	work out two positions work out the time (between the two positions) finds the distance between the two positions and the time to work out the speed		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ \text { 4.5.6.1.3 } \end{gathered}$
07.5	(the satellite is moving at a constant speed but) its direction is constantly changing its velocity is constantly changing, (so it is accelerating)		1 1	$\begin{gathered} \mathrm{AO3} \\ \text { 4.5.6.1.3 } \end{gathered}$
08.1	gravity		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$
08.2	$\begin{aligned} & \text { weight }=\text { mass } \times \text { gravitational field strength } \\ & =10 \times 10^{3} \times 9.8 \\ & =9.8 \times 10^{4}(\mathrm{~N}) \text { or } 98000(\mathrm{~N}) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .1 .3 \end{gathered}$

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	\qquad
08.3	$\begin{aligned} & \text { work done }=\text { force } \times \text { distance } \\ & =9.8 \times 10^{4} \times 2 \\ & =1.96 \times 10^{5}(\mathrm{~J}) \end{aligned}$	accept 2.0×10^{5}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO1 AO2 4.5.2
08.4	draw two arrows at 90 degrees one arrow along the slope and one perpendicular to the slope use the parallelogram rule to work out the length		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.1.4 } \end{gathered}$
08.5	$\begin{aligned} & \text { force needed to pull block up slope }=3000+49000=52000 \mathrm{~N} \\ & \text { distance }=4 \mathrm{~m} \\ & \text { work }=\text { force } x \text { distance } \\ & =52000 \times 4 \\ & =208000 \mathrm{~J} \end{aligned}$	resultant	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \\ & 4.5 .2 \end{aligned}$
08.6	the force needed along the slope is smaller than lifting it vertically against gravity	do not accept 'easier' without some reference to the size of the force	1	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .2 \end{aligned}$
09.1	the point at $4.2 \mathrm{~cm} / 4.4 \mathrm{~N}$		1	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
09.2	force $=$ spring constant \times extension		1	$\begin{aligned} & \text { AO1 } \\ & \text { 4.5.3 } \end{aligned}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
09.3	use of initial linear section of the graph/line of best fit (ignoring outlier) $1.0 \mathrm{~N}=$ spring constant $\times 0.011$ spring constant $=\frac{1.0}{0.011}$ $=90 \mathrm{~N} / \mathrm{m}(\text { or } 0.8 \mathrm{~N} / \mathrm{cm})$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
09.4	that is where the line starts to curve/bend/is no longer a straight line/as F is no longer proportional to e		1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
10.1	$\text { acceleration }=\frac{\text { final velocity-initial velocity }}{\text { time }}$	allow $a=\frac{v-u}{t}$ or acceleration = changeinvelocity time	1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.6.1.5 } \end{gathered}$
10.2	$\begin{aligned} & \text { acceleration }=\frac{7.12-1.12}{1.25} \\ & =4.8 \\ & \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	accept 4.8 with no working for two calculation marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .6 .1 .5 \end{gathered}$
10.3	the acceleration due to gravity $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ratio $=4.8: 9.8=1: 2$ (2.04)	accept 2:1 with reverse working shown	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.5 } \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
10.4	one mark for two straight lines with correct overall shape not starting at origin one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating two from: - the acceleration of the trolley down the ramp is bigger than the deceleration, (because the change in velocity takes a longer time) - the gradient when accelerating is larger than decelerating - the acceleration part shows a positive gradient, and the deceleration shows a negative gradient	one mark for two straight lines with correct overall shape not starting at origin one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating	3	$\begin{gathered} \mathrm{AO2} \\ \mathrm{AO} \\ \text { 4.5.6.1.5 } \end{gathered}$

