

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	hold the ruler as close to the centre of the light gates as possible, with the		1	A01
	make the measurement by looking directly at/at 90° to the ruler.			AO2
			1	
01.2	suitable suggestion e.g.,		1	AO3
	the card was dropped from different heights above light gate 1			4.5.6.1.4
01.3	the light gates use a light beam so produces a measurement of time, and the		1	AO3
	computer calculates velocity, so velocity measurements are more precise/more significant figures			
	the data logger can measure to $\frac{1}{1}$ second/1 ms			
	1000 when you use a ruler, you can measure to the nearest mm		1	
			1	
01.4	$(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$	allow symbols		AO2
	$(2.567) = (1.576) = 2 \times \text{acceleration} \times 0.50$	answer given to	1	
	acceleration = $\frac{2.987 - 1.576}{2 \times 0.3}$	figures	1	
	2.40.5	accept 11.7 with		
	= 11.715	no working for the	1	
	$= 11.7 (m/s^2)$	two calculation marks	1	
01.5	measured value is more than calculated value because card may not have		1	AO3
	fallen completely vertically and so distance travelled is actually greater than 30 cm			4.5.6.1.5
02.1	walking – 1.5 m/s		1	AO1
	cycling – 6 m/s		1	4.5.6.1.2

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
02.2	distance = speed × time		1	AO1
				4.5.6.1.2
02.3	1500 = 1.5 × time		1	A01
	time A = $\frac{1500}{1.5}$		1	AO2
	= 1000 s		1	4.5.6.1.2
	1500 250 c		1	
	$\frac{1}{6}$		1	
	difference = $1000 - 250 = 750$ s		1	
	= 12.5 minutes		1	
02.4	average speed = $\frac{total tistalice}{total time}$		1	AO1
	you do not need to travel at the fastest speed for the whole time		1	4.5.6.1.2
03.1	plots are: (0,0), (2,2), (4,5), (6,8), (8,14), (10,20), (12,22)	two points for	2	AO2
	curved line of best fit	points plotted correctly		4.5.6.1.4
03.2	evidence of tangent drawn at 4 seconds	accept values	1	AO2
	calculation of change in distance/change in time	from one or two	1	4.5.6.1.4
	$=\frac{o-2}{6-2}$	m/s	1	
	= 1.5 m/s			
03.3	the student moves with a steady speed higher than 1.5 m/s for about 4		1	AO3
	seconds		1	4.5.6.1.4
	then slows down			

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
04.1	car A the gradient of the line is greatest/steepest line		1 1	AO2 AO3 4.5.6.1.4
04.2	car C the line is horizontal between four and seven minutes		1 1	AO2 AO3 4.5.6.1.4
04.3	car C the line is curved/not a straight line/not a constant gradient a slope after seven minutes		1 1	AO2 AO3 4.5.6.1.4
04.4	car A it travelled the same distance in the shortest time		1 1	AO2 AO3 4.5.6.1.4
04.5	correct time = 4 minutes = 240 seconds, correct distance = 7.5 km = 7500 m distance = speed × time 7500 = speed × 240 speed = $\frac{7500}{240}$ = 31 (31.25 m/s)	reading values off graph and converting	1 1 1 1	AO2 4.5.6.1.4
05.1	it is possible to find the velocity at a range of different times/lots of times, compared to light gates which measure two velocities		1	AO3 4.5.6.1.5

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	AB shows decreasing acceleration		1	AO3
	BC shows constant acceleration		1	4.5.6.1.5
	CD shows zero acceleration/constant speed/constant velocity		1	
05.3	initial (greatest acceleration) = $\frac{\text{change in velocity}}{\text{time taken}}$	accept 2.5 with no	1	AO2
	$=\frac{0.5-0}{1}$	working for the	1	4.5.6.1.5
	$= 2.5 \text{ m/s}^2.$	two calculation marks	1	
05.4	distance travelled = area under the graph by counting squares		1	AO2
	one square = 0.5 × 0.5 = 0.25 m		1	4.5.6.1.5
	number of squares = 38	allow answers	1	
	total distance = 38 × 0.25 = 9.5 m	between nine and ten m	1	
06	Level 3: Well organized answer with descriptions of reasons for calculations.		5-6	AO1
	Appropriate units given in all calculations. At least one assumption with			AO2
	effect on calculation given.			AO3
	unit conversions missing or unhelpful. Some comment about speeds not		3-4	4.5.61.2
	being constant.			
	Level 1: Some relevant calculations completed, but unit conversions may be		1-2	
	missing, and no explanation of method. No comment about assumptions.			
	No relevant comment.		0	

Practice answers

P9

Question	Answers	Extra information	Mark	AO / Specification reference
	 Indicative content: suitable value for typical speeds: car - 50 mph distance = speed × time 20 miles = 50 mph × time 20 miles = 50 mph × time time = ²⁰/₅₀ = ²/₅ hour = 2 × ⁶⁰/₅ = 24 minutes bicycle - 15 mph method as above: 80 minutes you arrive 80 - 24 = 56 minutes earlier train - 80 mph method as above: 15 minutes assuming he travels at that speed for the entirety of the journey he will not do this, if faster than assumed speed he will arrive quicker and if slower journey times would be longer for most journeys there are multiple parts travelling at different speeds train has ignored the time taken to get to and from the station, this should be added on 	allow suitable values for typical speeds in m/s and times calculated with distance of 20 miles converted to metres		
07.1	distance travelled = 2 × 20 200 000 = 40 400 000 distance = speed × time 40 400 000 = 300 000 000 × time time = $\frac{40400000}{30000000}$ = 0.13 s		1 1 1 1	AO1 AO2 4.5.6.1.2

OXFORD Revise

Practice answers

P9

Question	Answers	Extra information	Mark	AO / Specification reference
07.2	convert 55 mph to m/s: 55 mph = 55 × $\frac{1609}{1000}$		1	AO2
	= 24.6 m/s (25 m/s)			4.5.6.1.2
	distance = speed × time		1	
	= 24.6 × 0.13		1	
	= 3.20 m (if 25 m/s and 0.1 s used, then 3.3 m)		-	
07.3	systematic		1	AO3
	the same time difference is introduced each time (though the distance will		1	
	depend on the speed that distance is predictable)			
07.4	work out two positions		1	AO3
	work out the time (between the two positions)		1	4.5.6.1.3
	speed		1	
07.5	(the satellite is moving at a constant speed but) its direction is constantly		1	AO3
	changing			4.5.6.1.3
	its velocity is constantly changing, (so it is accelerating)		1	
08.1	gravity		1	AO1
				4.5.1.3
08.2	weight = mass × gravitational field strength			A01
	$=10 \times 10^{\circ} \times 9.8$		1	AO2
	= 9.8×10 ⁴ (N) or 98000 (N)		1	4.5.1.3

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.3	work done = force × distance			A01
	$= 9.8 \times 10^4 \times 2$		1	AO2
	$= 1.96 \times 10^{3}$ (J)	accept 2.0×10^5	1	4.5.2
08.4	draw two arrows at 90 degrees		1	A01
	one arrow along the slope and one perpendicular to the slope		1	AO2
	use the parallelogram rule to work out the length		1	4.5.1.4
08.5	force needed to pull block up slope = 3000 + 49 000 = 52 000N distance = 4 m	resultant	1	AO1 AO2
	work = force x distance		1	4.5.2
	$= 52\ 000 \times 4$ = 208\ 000 J		1	
08.6	the force needed along the slope is smaller than lifting it vertically against	do not accept	1	AO2
	gravity	'easier' without		4.5.2
		some reference to		
		force		
09.1	the point at 4.2 cm/4.4 N		1	AO3
				4.5.3
09.2	force = spring constant × extension		1	AO1 4.5.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
09.3	use of initial linear section of the graph/line of best fit (ignoring outlier) 1.0 N = spring constant \times 0.011		1 1	AO2 4.5.3
	spring constant = $\frac{1}{0.011}$ = 90 N/m (or 0.8 N/cm)		1 1	
09.4	that is where the line starts to curve/bend/is no longer a straight line/as F is no longer proportional to e		1	AO1 4.5.3
10.1	acceleration = $\frac{\text{final velocity-initial velocity}}{\text{time}}$	allow a = $\frac{v - u}{t}$ or acceleration = $\frac{changeinvelocity}{time}$	1	AO1 4.5.6.1.5
10.2	acceleration = $\frac{7.12 - 1.12}{1.25}$ = 4.8 m/s ²	accept 4.8 with no working for two calculation marks	1 1 1	AO1 AO2 4.5.6.1.5
10.3	the acceleration due to gravity 9.8 m/s^2 ratio = $4.8:9.8 = 1:2$ (2.04)	accept 2:1 with reverse working shown	1 1	AO1 AO2 4.5.6.1.5

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.4	 one mark for two straight lines with correct overall shape not starting at origin one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating two from: the acceleration of the trolley down the ramp is bigger than the deceleration, (because the change in velocity takes a longer time) the gradient when accelerating is larger than decelerating the acceleration part shows a positive gradient, and the deceleration shows a negative gradient 	one mark for two straight lines with correct overall shape not starting at origin one mark for a longer time decelerating than accelerating one mark for steeper line accelerating than decelerating	3	AO2 AO3 4.5.6.1.5