



| Question | Answers                                                                                                                                                                                                                          | Extra information | Mark        | AO /<br>Specification<br>reference |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|------------------------------------|
| 01.1     | force – newtonmeter <b>or</b> amount of masses/weights on end of spring extension – ruler                                                                                                                                        |                   | 1<br>1      | AO2<br>4.5.3                       |
| 01.2     | measure the length of the spring with the ruler apply a known force/ (hang up the spring and) hang a known weight on it measure the length again find the extension by subtracting the original length from the stretched length |                   | 1<br>1<br>1 | AO2<br>AO3<br>4.5.3                |
| 01.3     | to get more accurate/precise measurements                                                                                                                                                                                        |                   | 1           | AO2<br>AO3<br>4.5.3                |
| 01.4     | <ul><li>either:</li><li>repeat it</li><li>ignore it when they are calculating the mean</li></ul>                                                                                                                                 |                   | 1           | AO2<br>AO3<br>4.5.3                |
| 01.5     | line graph the data are continuous/all numbers and no words/names                                                                                                                                                                |                   | 1<br>1      | AO2<br>4.5.3                       |
| 02.1     | non-contact – weight/force of the Earth on the wood contact force – upthrust/upwards force on the water on the wood                                                                                                              |                   | 1<br>1      | AO1<br>AO2<br>4.5.1.2              |
| 02.2     | the forces are equal in magnitude and opposite in direction                                                                                                                                                                      |                   | 1           | AO1<br>AO2<br>4.5.1.1<br>4.5.1.4   |





| Question | Answers                      | Extra information | Mark | AO /<br>Specification<br>reference |
|----------|------------------------------|-------------------|------|------------------------------------|
| 02.3     | water resistance             |                   | 1    | AO1                                |
|          | contact force                |                   | 1    | AO2                                |
|          |                              |                   |      | 4.5.1.2                            |
| 03.1     | work done = force × distance | accept W = Fs     | 1    | AO1                                |
|          |                              |                   |      | 4.5.2                              |
| 03.2     | work done = 20 × 30          |                   | 1    | AO2                                |
|          | = 600 (Nm or J)              |                   | 1    | 4.5.2                              |
| 03.3     | newton metres/N m            |                   | 1    | AO1                                |
|          | joules/J                     |                   |      | 4.5.2                              |
| 03.4     | friction                     |                   | 1    | AO1                                |
|          |                              |                   |      | 4.5.2                              |





| Question | Answers                                                                                                                                                              | Extra<br>information                                                                                                                          | Mark | AO /<br>Specification<br>reference |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|
| 03.5     | chemical energy store will decrease (food/oxygen) thermal energy store (of the surroundings) will increase                                                           | do not accept answers involving changes in kinetic energy store N.B. at constant speed the kinetic energy store will stay at a constant level | 1    | AO2<br>4.5.2                       |
| 04.1     | <ul><li>any sensible suggestion e.g.,</li><li>difficult to see the undetected position of the ruler to measure from</li><li>difficult to see the extension</li></ul> |                                                                                                                                               | 1    | AO3<br>4.5.3                       |
| 04.2     | ignore the outlier 17 average of the other two readings = $\frac{10+12}{2}$ = 11                                                                                     |                                                                                                                                               | 1    | AO2<br>4.5.3                       |





| Question | Answers                                                                                                                                                                                     | Extra information     | Mark   | AO /<br>Specification<br>reference |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------------------------------------|
| 04.3     | one mark for correct plotting of four points one mark for correct plotting of remaining points one mark for curved line of best fit one mark for appropriate y-axis label and scale         |                       | 4      | AO2<br>AO3<br>4.5.3                |
| 04.4     | no the line is not straight/linear (through origin)                                                                                                                                         |                       | 1<br>1 | AO3                                |
| 05.1     | the first column is should be labelled mass in grams and not weight which would be in newtons (N) they should convert g to kg and then to N using weight = mass (in kg) $\times$ g          |                       | 1      | AO2<br>4.5.1.3                     |
| 05.2     | one mark for correct value of force converted from g one mark for correct plotting of at least four points one mark for correctly labelled y-axis one mark for appropriate line of best fit |                       | 4      | AO2<br>4.5.1.3<br>4.5.3            |
| 05.3     | original length = intercept on x axis/when force on sample is zero = 3.0 cm                                                                                                                 | allow 2.5 –<br>3.5 cm | 1<br>1 | AO3<br>4.5.3                       |
| 05.4     | as the force increases the material becomes less stiff/easier to stretch/the same increase in force produces a bigger increase in length                                                    |                       | 1      | AO2<br>AO3<br>4.5.3                |
| 05.5     | it would not be suitable the extension is not proportional to the force                                                                                                                     |                       | 1<br>1 | AO3<br>4.5.3                       |





| Question | Answers                                                                                                                 |             | Extra information       | Mark | AO /<br>Specification<br>reference |
|----------|-------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|------|------------------------------------|
| 06.1     | the force of the hand on the bag                                                                                        |             | or words to that effect | 1    | AO2<br>4.5.3                       |
| 06.2     | inelastic deformation is deformation where the object does not ret<br>original size and shape when the force is removed | turn to its |                         | 1    | AO1<br>4.5.3                       |
| 06.3     |                                                                                                                         |             | one mark for            | 2    | AO3                                |
|          | Statement                                                                                                               | Correct     | each correct            |      | 4.5.3                              |
|          | the graph for the plastic bag shows a non-linear relationship between force and extension                               | 1           | row                     |      |                                    |
|          | the graph for the plastic bag shows that is proportional to extension                                                   |             |                         |      |                                    |
|          | a graph that is a straight line is likely to be for a spring                                                            | ✓           |                         |      |                                    |
|          | the material that produced a linear graph has been inelastically deformed                                               |             |                         |      |                                    |
| 07.1     | extension = stretched length - unstretched length                                                                       |             |                         |      | AO2                                |
|          | = 3 cm - 2 cm/0.03 - 0.02                                                                                               |             |                         | 1    | 4.5.3                              |
|          | = 1 cm/ 0.01 m                                                                                                          |             |                         | 1    |                                    |
| 07.2     | force = spring constant × extension                                                                                     |             | allow F = ke            | 1    | AO1                                |
|          |                                                                                                                         |             |                         |      | 4.5.3                              |
| 07.3     | $2 = k \times 0.01$                                                                                                     |             |                         | 1    | AO2                                |
|          | $k = \frac{2}{0.01} = 200 \text{ N/m}$                                                                                  |             |                         |      | 4.5.3                              |
|          | 0.01                                                                                                                    |             |                         | 1    |                                    |





| Question | Answers                                                                                                                                                                         | Extra<br>information                                    | Mark   | AO /<br>Specification<br>reference |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|------------------------------------|
| 07.4     | energy = $0.5 \times \text{spring constant} \times \text{extension}^2$<br>= $0.5 \times 200 \times 0.01^2$<br>= $0.01 \text{ J}$                                                | allow E = $\frac{1}{2}$ ke <sup>2</sup>                 | 1<br>1 | AO2<br>4.5.3                       |
| 07.5     | 0.01 J the work done on the spring is equal to the elastic energy stored in the spring                                                                                          |                                                         | 1<br>1 | AO2<br>4.5.3                       |
| 08.1     | up arrow: force of the workbench on the tub down arrow: force of the Earth on the tub                                                                                           | accept<br>'normal' or<br>'reaction'                     | 1      | AO2<br>4.5.1.4                     |
|          | down arrow should be larger than the up arrow                                                                                                                                   | accept 'weight' do not accept 'gravity' one mark for    | 1      |                                    |
|          |                                                                                                                                                                                 | two equal<br>length arrows<br>in opposite<br>directions | 1      |                                    |
| 08.2     | the weight can be resolved into two components, one down the ramp and one at 90 degrees to the ramp there is a force of friction opposing the component of weight down the ramp |                                                         | 1      | AO2<br>4.5.1.4                     |
|          | which is smaller than the component of the weight (so there is a resultant force down the ramp and the tub accelerates)                                                         |                                                         | 1<br>1 |                                    |
| 08.3     | one mark for correct x and y labels<br>one mark for horizontal line                                                                                                             |                                                         | 2      | AO3                                |





| Question | Answers                                                                                    | Extra information | Mark | AO /<br>Specification<br>reference |
|----------|--------------------------------------------------------------------------------------------|-------------------|------|------------------------------------|
| 08.4     | any sensible suggestion, e.g.,                                                             |                   | 1    | AO3                                |
|          | <ul> <li>as the mass increases, the frictional force increases</li> </ul>                  |                   |      |                                    |
|          | <ul> <li>as the mass increases, the component of the weight down the slope also</li> </ul> |                   |      |                                    |
|          | increases, so the two effects cancel out                                                   |                   |      |                                    |





| Question | Answers                                                                                                                                                                                                   | Extra information                                                                                                                                                                                                                                                                                        | Mark | AO /<br>Specification<br>reference   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------|
| 09.1     | free body diagram e.g., up arrow: normal/reaction left arrow: driving force/18 000N right arrow: resistive force/12 000 N down arrow: weight/15 kN right arrow should be longer than all the other arrows | one mark for arrow left labelled driving force/18000 N one mark for arrow right labelled resistive force/12000 N one mark for arrow downwards labelled weight/15 kN one mark for arrow upwards labelled normal force weight and normal arrows the same length, driving force arrow longer than resistive | 4    | AO2<br>4.5.1.1<br>4.5.1.2<br>4.5.1.4 |
|          | www.oxfordsecondary.co.uk                                                                                                                                                                                 | force arrow                                                                                                                                                                                                                                                                                              |      |                                      |





| Question | Answers                                                                                                                            | Extra information                                                                               | Mark        | AO /<br>Specification<br>reference   |
|----------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|--------------------------------------|
| 09.2     | horizontally: resultant = 18 000 - 12 000<br>= 6000 N<br>to the left<br>vertically: resultant = 15 000 - 15 000<br>= 0 N           |                                                                                                 | 1<br>1<br>1 | AO2<br>4.5.1.4                       |
| 09.3     | weight = 15 000 N<br>weight = mass x gravitational field strength<br>15 000 = mass x 9.8<br>mass = $\frac{15000}{9.8}$<br>= 1531kg |                                                                                                 | 1<br>1<br>1 | AO2<br>4.5.1.3                       |
| 09.4     | both vertical arrows would change slightly in length but still cancel out/be the same size the horizontal arrows would not change  |                                                                                                 | 1<br>1<br>1 | AO3<br>4.5.1.2<br>4.5.1.3<br>4.5.1.4 |
| 10.1     | appropriate scale diagram e.g.,  1 cm = 10 N  answer = 153 N (allow 148 – 158)                                                     | one mark for<br>clear scale<br>one mark for<br>parallelogram<br>drawn<br>one mark for<br>answer | 3           | AO3<br>4.5.1.4                       |





| Question | Answers                                                                                                       | Extra<br>information | Mark | AO /<br>Specification<br>reference |
|----------|---------------------------------------------------------------------------------------------------------------|----------------------|------|------------------------------------|
| 10.2     | (if angle increases) that tension increases                                                                   |                      | 1    | AO3                                |
|          | because the component of the tension decreases/so that the resultant of the two tension forces stays the same |                      | 1    | 4.5.1.4                            |
| 10.3     | the tension in the second arrangement is bigger                                                               |                      | 1    | AO3                                |
|          | the angle between the vertical component of tension and the weight is bigger in the second arrangement        |                      | 1    | 4.5.1.4                            |