AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	\qquad
01.1	force - newtonmeter or amount of masses/weights on end of spring extension - ruler		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
01.2	measure the length of the spring with the ruler apply a known force/ (hang up the spring and) hang a known weight on it measure the length again find the extension by subtracting the original length from the stretched length		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
01.3	to get more accurate/precise measurements		1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} \\ & 4.5 .3 \end{aligned}$
01.4	either: - repeat it - ignore it when they are calculating the mean		1	$\begin{aligned} & \text { AO2 } \\ & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
01.5	line graph the data are continuous/all numbers and no words/names		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
02.1	non-contact - weight/force of the Earth on the wood contact force - upthrust/upwards force on the water on the wood		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.1.2 } \end{gathered}$
02.2	the forces are equal in magnitude and opposite in direction		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ 4.5 .1 .1 \\ 4.5 .1 .4 \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	AO / Specification reference
02.3	water resistance contact force		1	A01
				AO2
				4.5.1.2
03.1	work done $=$ force \times distance	accept $\mathrm{W}=\mathrm{Fs}$	1	A01
				4.5.2
03.2	work done $=20 \times 30$		1	AO2
	$=600$ (Nm or J)		1	4.5.2
03.3	newton metres/ N m joules/J		1	A01
03.4	friction		1	AO1
				4.5.2

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
03.5	chemical energy store will decrease (food/oxygen) thermal energy store (of the surroundings) will increase	do not accept answers involving changes in kinetic energy store N.B. at constant speed the kinetic energy store will stay at a constant level	1	$\begin{aligned} & \mathrm{AO2} \\ & 4.5 .2 \end{aligned}$
04.1	any sensible suggestion e.g., - difficult to see the undetected position of the ruler to measure from - difficult to see the extension		1	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
04.2	ignore the outlier 17 average of the other two readings $=\frac{10+12}{2}$ $=11$		1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
04.3	one mark for correct plotting of four points one mark for correct plotting of remaining points one mark for curved line of best fit one mark for appropriate y -axis label and scale		4	$\begin{aligned} & \text { AO2 } \\ & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
04.4	no the line is not straight/linear (through origin)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3
05.1	the first column is should be labelled mass in grams and not weight which would be in newtons (N) they should convert g to kg and then to N using weight $=$ mass (in kg$) \times \mathrm{g}$		1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.3 } \end{gathered}$
05.2	one mark for correct value of force converted from g one mark for correct plotting of at least four points one mark for correctly labelled y-axis one mark for appropriate line of best fit		4	$\begin{gathered} \text { AO2 } \\ \text { 4.5.1.3 } \\ \text { 4.5.3 } \end{gathered}$
05.3	$\begin{aligned} & \text { original length }=\text { intercept on } x \text { axis/when force on sample is zero } \\ & =3.0 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { allow } 2.5 \text { - } \\ & 3.5 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
05.4	as the force increases the material becomes less stiff/easier to stretch/the same increase in force produces a bigger increase in length		1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 3 \\ & 4.5 .3 \end{aligned}$
05.5	it would not be suitable the extension is not proportional to the force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Science Combined Higher

Question	Answers		Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
06.1	the force of the hand on the bag		or words to that effect	1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
06.2	inelastic deformation is deformation where the object does not return to its original size and shape when the force is removed			1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
06.3	Statement the graph for the plastic bag shows a non-linear relationship between force and extension		one mark for each correct row	2	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
		Correct			
		\checkmark			
	the graph for the plastic bag shows that is proportional to extension				
	a graph that is a straight line is likely to be for a spring	\checkmark			
	the material that produced a linear graph has been inelastically deformed				
07.1	$\begin{aligned} & \text { extension = stretched length }- \text { unstretched length } \\ & =3 \mathrm{~cm}-2 \mathrm{~cm} / 0.03-0.02 \\ & =1 \mathrm{~cm} / 0.01 \mathrm{~m} \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
07.2	force $=$ spring constant \times extension		allow $\mathrm{F}=\mathrm{ke}$	1	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
07.3	$\begin{aligned} & 2=k \times 0.01 \\ & k=\frac{2}{0.01}=200 \mathrm{~N} / \mathrm{m} \end{aligned}$			1 1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
07.4	$\begin{aligned} & \text { energy }=0.5 \times \text { spring constant } \times \text { extension }{ }^{2} \\ & =0.5 \times 200 \times 0.01^{2} \\ & =0.01 \mathrm{~J} \end{aligned}$	allow $\mathrm{E}=\frac{1}{2} \mathrm{ke}^{2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
07.5	$0.01 \mathrm{~J}$ the work done on the spring is equal to the elastic energy stored in the spring		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & 4.5 .3 \end{aligned}$
08.1	up arrow: force of the workbench on the tub down arrow: force of the Earth on the tub down arrow should be larger than the up arrow	accept 'normal' or 'reaction' accept 'weight' do not accept 'gravity' one mark for two equal length arrows in opposite directions	1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.4 } \end{gathered}$
08.2	the weight can be resolved into two components, one down the ramp and one at 90 degrees to the ramp there is a force of friction opposing the component of weight down the ramp which is smaller than the component of the weight (so there is a resultant force down the ramp and the tub accelerates)		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.5 .1 .4 \end{gathered}$
08.3	one mark for correct x and y labels one mark for horizontal line		2	AO3

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	Specification reference
08.4	any sensible suggestion, e.g., - as the mass increases, the frictional force increases as the mass increases, the component of the weight down the slope also increases, so the two effects cancel out	1	AO3	

AQA GCSE Science Combined Higher

	Question	Answers	Extra information	Mark	AO / Specification reference
	09.1	free body diagram e.g., up arrow: normal/reaction left arrow: driving force/18 000N right arrow: resistive force/12 000 N down arrow: weight/15 kN right arrow should be longer than all the other arrows	one mark for arrow left labelled driving force/18000 N one mark for arrow right labelled resistive force/12000 N one mark for arrow downwards labelled weight/15 kN one mark for arrow upwards labelled normal force weight and normal arrows the same length, driving force arrow longer than resistive	4	$\begin{gathered} \mathrm{AO} 2 \\ 4.5 .1 .1 \\ 4.5 .1 .2 \\ 4.5 .1 .4 \end{gathered}$
O Oxford Un	ersity Press	ww.oxfordsecondary.co.uk	force arrow		

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
09.2	```horizontally: resultant \(=18000-12000\) \(=6000 \mathrm{~N}\) to the left vertically: resultant \(=15000-15000\) \(=0 \mathrm{~N}\)```		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.4 } \end{gathered}$
09.3	$\begin{aligned} & \text { weight }=15000 \mathrm{~N} \\ & \text { weight }=\text { mass } \times \text { gravitational field strength } \\ & 15000=\text { mass } \times 9.8 \\ & \text { mass }=\frac{15000}{9.8} \\ & =1531 \mathrm{~kg} \end{aligned}$		1 1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.5.1.3 } \end{gathered}$
09.4	both vertical arrows would change slightly in length but still cancel out/be the same size the horizontal arrows would not change		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ 4.5 .1 .2 \\ 4.5 .1 .3 \\ 4.5 .1 .4 \end{gathered}$
10.1	$\begin{aligned} & \text { appropriate scale diagram e.g., } \\ & 1 \mathrm{~cm}=10 \mathrm{~N} \\ & \text { answer }=153 \mathrm{~N} \text { (allow } 148-158 \text {) } \end{aligned}$	one mark for clear scale one mark for parallelogram drawn one mark for answer	3	$\begin{gathered} \text { AO3 } \\ \text { 4.5.1.4 } \end{gathered}$

AQA GCSE Science Combined Higher

Practice answers

Question		Extra information	Mark	AO / Specification reference
10.2	(if angle increases) that tension increases because the component of the tension decreases/so that the resultant of the two tension forces stays the same		AO3	
10.3	the tension in the second arrangement is bigger the angle between the vertical component of tension and the weight is bigger in the second arrangement	4.5 .1 .4		

