## AQA GCSE Science Combined Higher

| Question | Answers | Extra information | Mark | $\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 01.1 | $\begin{aligned} & \text { volume before }=75 \mathrm{~cm}^{3} \\ & \text { volume after }=90 \mathrm{~cm}^{3} \\ & \text { difference in volume = volume of clay. } \\ & =90 \mathrm{~cm}^{3}-75 \mathrm{~cm}^{3} \\ & =15 \mathrm{~cm}^{3} \end{aligned}$ | one mark for evidence of using two readings from the measuring cylinders | 1 <br> 1 | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.3.1.1 } \end{gathered}$ |
| 01.2 | resolution $=\frac{1}{2}$ smallest division $=\frac{1}{2} \times 5=2.5 \mathrm{~cm}^{3}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{AO1} \\ & \mathrm{AO} 2 \end{aligned}$ |
| 01.3 | digital balance |  | 1 | AO2 |
| 01.4 | $\text { density }=\frac{\text { mass }}{\text { volume }}$ | $\text { allow } \rho=\frac{\mathrm{m}}{\mathrm{v}}$ | 1 | AO1 |
| 01.5 | $\begin{aligned} & \text { density }=\frac{23.41}{15} \\ & =1.56 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$ | accept 1.56 or 1.6 with no working shown for two marks | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.1 } \end{gathered}$ |
| 01.6 | measure the length of each side (in cm )/measure the length, breadth and height <br> cube the answer/multiply the length, breadth and height |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.1 } \end{gathered}$ |
| 02.1 | vibrating <br> potential <br> moving fast <br> kinetic |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.2.1 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

## Practice answers

| Question | Answers | Extra information | Mark | $\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 02.2 | the internal energy changes from mainly potential to mainly kinetic/more kinetic | do not accept answers involving solids/liquids/gases | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.2.1 } \end{gathered}$ |
| 02.3 | the particles in a gas are in random motion |  | 1 | $\begin{gathered} \text { AO1 } \\ 4.3 .2 .1 \end{gathered}$ |
| 03.1 | $20^{\circ} \mathrm{C}$ |  | 1 | AO2 |
| 03.2 | $70^{\circ} \mathrm{C}$ |  | 1 | AO2 |
| 03.3 | energy transferred $=$ power $\times$ time | allow $\mathrm{E}=\mathrm{P} \times \mathrm{t}$ | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.3.2.3 } \end{gathered}$ |
| 03.4 | $\begin{aligned} & \text { energy }=1000 \times 2 \times 60 \\ & =120000 \mathrm{~J} \\ & \text { energy transferred }=\text { mass } \times \text { specific latent heat of vaporisation } \\ & 120000=\text { mass } \times 365000 \\ & \text { mass }=\frac{120000}{365000} \\ & =0.33 \mathrm{~kg} \end{aligned}$ | allow $\mathrm{E}=\mathrm{mL}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$ |
| 03.5 | an overestimate <br> (the energy transferred to vaporise the water is lower because) some energy is transferred to the thermal energy store of the surroundings. |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$ |
| 03.6 | a line that starts at $20^{\circ} \mathrm{C}$ <br> steeper than the original line <br> becomes horizontal at $70^{\circ} \mathrm{C}$ at about 2 minutes. |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO2 |

## AQA GCSE Science Combined Higher

## Practice answers

| Question | Answers | Extra information | Mark | $\begin{gathered} \text { AO / } \\ \text { Specification } \\ \text { reference } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 04.1 | energy $=$ power $\times$ time | allow $\mathrm{E}=\mathrm{P} \times \mathrm{t}$ | 1 | AP1 |
| 04.2 | $\begin{aligned} & 2 \mathrm{~kW}=2000 \mathrm{~W} \\ & 2 \text { minutes }=120 \text { seconds } \\ & \text { energy }=2000 \times 120 \\ & =240000 \mathrm{~J} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.1.1.4 } \\ 4.3 .2 .3 \end{gathered}$ |
| 04.3 | $\begin{aligned} & \text { change in mass }=1.276-1.180=0.096 \mathrm{~kg} \\ & \text { energy transferred = specific latent heat } \times \text { change in mass } \\ & 240000 \mathrm{~J}=\text { specific latent heat of vaporisation } \times 0.096 \mathrm{~kg} \\ & \text { specific latent heat of vaporisation }=\frac{240000}{0.096} \\ & =2500000 \mathrm{~J} / \mathrm{kg} \\ & =2500 \mathrm{~kJ} / \mathrm{kg} \end{aligned}$ | allow $\mathrm{E}=\mathrm{mL}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | A01 |
| 04.4 | the energy transferred was heating the material of the kettle/air around it as well as vaporising the water <br> a lower mass of water vaporised than should have been the case <br> so the value calculated was bigger than the textbook value |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$ |
| 05.1 | specific latent heat is the energy required to change the state of 1 kg of a substance specific heat capacity is the energy required to change the temperature of 1 kg of a substance by $1^{\circ} \mathrm{C}$ |  | 1 <br> 1 | $\begin{gathered} \text { AO1 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$ |


| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 05.2 | $\begin{aligned} & \text { energy to raise temperature }=\text { specific heat capacity } \times \text { mass } \times \text { change in } \\ & \text { temperature } \\ & =2460 \times 0.01 \times 50 \\ & =1230 \mathrm{~J} \\ & \text { energy to vaporise }=\text { mass } \times \text { specific latent heat } \\ & =0.01 \times 838000 \\ & =8380 \mathrm{~J} \end{aligned}$ <br> the energy required to vaporise the ethanol is bigger (about seven times bigger) than the energy required to raise the temperature by $50^{\circ} \mathrm{C}$ | allow $\mathrm{E}=\mathrm{m} \mathrm{c} \Delta \theta$ <br> allow 1230 with no substitution for two marks allow $E=m L$ allow 8380 with no substitution for two marks allow any valid comparison e.g., the difference | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$ |
| 05.3 | the energy required to break the bonds between particles in a liquid is much bigger than the energy required to make particles in a liquid move faster <br> the energy to break bonds is related to the specific latent heat, so the specific latent heat of vaporisation is bigger |  | $1$ $1$ | $\begin{gathered} \text { AO1 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$ |
| 06.1 | (when the student is in the shower) water evaporates to make water vapour <br> the water vapour condenses when it comes in contact with the colder mirror and energy is transferred to the mirror |  | 1 <br> 1 | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.3.1.2 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

## Practice answers

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 06.2 | for converting all kJ to $\mathrm{J}, \mathrm{cm}$ to m $\begin{aligned} & \text { the mass of water that condenses }=\frac{\text { energy }}{\text { specific latent heat of vaporisaton }} \\ & =\frac{730000}{2265000} \\ & =0.322 \mathrm{~kg} \\ & \text { mass }=\text { density } \times \text { volume } \\ & \text { volume of water }=\frac{0.322}{1 \times 10^{-8}}=0.000322 \\ & \text { volume }=\text { area } x \text { thickness } \\ & \text { thickness of water }=\frac{0.000322}{0.6 \times 0.6}=8.95 \times 10^{-4} \mathrm{~m} \end{aligned}$ |  | 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.3.1.1 } \\ \text { 4.3.2.3 } \end{gathered}$ |
| 07.1 | the particles in a solid are arranges in a regular pattern/array the particles in a gas are moving in all/random direction the particles in a solid are vibrating about a fixed position the particles in a gas are moving quickly |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO2 |
| 07.2 | the particles collide with the walls of the container each particle exerts a force on the wall pressure is force per unit area the total force of all the collisions of the particles per unit area is the pressure |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO3 |

## AQA GCSE Science Combined Higher

## Practice answers

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 07.3 | pressure on $y$-axis, temperature on $x$-axis <br> straight line with positive gradient <br> that intercepts $y$-axis above zero (does not need to be extrapolated) |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.1.2.1 } \end{gathered}$ |
| 08.1 | the steam is at a high temperature (and in the gas state) steam transfers latent heat energy to the milk (steam cools/changes to a liquid state and the temperature of the milk rises) |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$ |
| 08.2 | ```convert 242 g to 0.242 kg, and 3.93 kJ/kg ' C to 3930 J/kg ' C temperature difference = 70-20=50 energy required = mass }\times\mathrm{ specific heat capacity }\times\mathrm{ change in temperature = 0.242 * 3930 * 50 = 47553 J ( }\approx48000\textrm{J}\mathrm{ so about 48 kJ)``` | allow $\mathrm{E}=\mathrm{mc} \Delta \theta$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.3 .2 .2 \\ 4.3 .2 .3 \end{gathered}$ |
| 08.3 | $\begin{aligned} & \text { convert } 2260 \mathrm{~kJ} / \mathrm{kg} \text { to } 2260000 \mathrm{~J} / \mathrm{kg} \\ & \text { energy }=\text { mass } \times \text { specific latent heat of vaporisation } \\ & 47553=\text { mass } \times 2260000 \\ & \text { mass }=\frac{47553}{2260000} \\ & =0.02 \mathrm{~kg} \end{aligned}$ | allow $\mathrm{E}=\mathrm{mL}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$ |
| 08.4 | assume that all of the energy transferred to the milk to heat it comes from the change of state of the steam |  | 1 | $\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.3 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 09.1 | B <br> D the temperature isn't changing/doesn't change even though the substance is being heated |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 09.2 | solid <br> it changes state twice/goes from solid to liquid, then liquid to gas |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 09.3 | A |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 09.4 | $\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 10.1 | $\begin{aligned} & \text { volume }=5^{3} \\ & =125 \mathrm{~cm}^{3} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 10.2 | $\begin{aligned} & \text { density }=\frac{\text { mass }}{\text { volume }} \\ & 1.5=\frac{\text { mass }}{125} \\ & \text { mass }=1.5 \times 125 \mathrm{~cm}^{3} \\ & =187.5 \mathrm{~g} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.3.1.1 } \end{gathered}$ |
| 10.3 | sublimation |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |
| 10.4 | if the process is reversed, the material recovers its original properties |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.3.1.2 } \end{gathered}$ |


| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 10.5 | the internal energy of the gas is bigger than the internal energy of the solid the particles have more kinetic energy/are moving faster |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .1 \end{gathered}$ |
| 11.1 | one mark for correct symbol one mark for correct label |  | 2 | $\begin{gathered} \text { AO1 } \\ \text { 4.2.1.1 } \end{gathered}$ |
| 11.2 | (when they put the test tube into iced water) the temperature of the water decreases <br> the resistance of the thermistor increases <br> the potential difference across the thermistor increases <br> $V_{\text {out }}$ decreases <br> because the total potential difference across the thermistor and the resistor $=12 \mathrm{~V}$ at all times |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ \text { 4.2.1.4 } \end{gathered}$ |
| 11.3 | find the potential difference across the resistor by measuring $\mathrm{V}_{\text {out }}$ find potential difference across thermistor by subtracting $\mathrm{V}_{\text {out }}$ from 12 V use $\frac{\text { potentialdifference across the resistor }}{\text { potentialdifference across the thermistor }}=$ <br> resistanceof resistor resistanceof thermistor use a graph/table of the resistance of the thermistor at different temperatures to work out the temperature of the water. |  | 1 <br> 1 <br> 1 <br> 1 | $\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & 4.2 .2 \end{aligned}$ |
| 11.4 | sensible suggestions e.g., the human body continually generates thermal energy, but the water in the test tube does not. |  | 1 | AO3 |

