

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	volume before = 75 cm ³	one mark for	1	A01
	volume after = 90 cm ³	evidence of using		AO2
	difference in volume = volume of clay.	two readings from		4.3.1.1
	$= 90 \text{ cm}^3 - 75 \text{ cm}^3$	the measuring		
	=15 cm ³	cylinders	1	
01.2	resolution = $\frac{1}{2}$ smallest division		1	A01
	$=\frac{1}{2} \times 5 = 2.5 \text{ cm}^3$		1	AO2
01.3	digital balance		1	AO2
01.4	density = $\frac{mass}{volume}$	allow $\rho = \frac{m}{v}$	1	A01
01.5	23.41	accept 1.56 or 1.6	1	AO2
	density = $\frac{23.41}{15}$	with no working	1	4.3.1.1
	= 1.56 g/cm ³	shown for two marks		
01.6	measure the length of each side (in cm)/measure the length, breadth and		1	A01
	height		1	4.3.1.1
	cube the answer/multiply the length, breadth and height			
02.1	vibrating		1	A01
	potential		1	4.3.2.1
	moving fast		1	
	kinetic		1	

Question	Answers	Extra information	Mark	AO / Specification reference
02.2	the internal energy changes from mainly potential to mainly kinetic/more kinetic	do not accept answers involving solids/liquids/gases	1 1	AO1 4.3.2.1
02.3	the particles in a gas are in random motion		1	AO1 4.3.2.1
03.1	20 °C		1	AO2
03.2	70 °C		1	AO2
03.3	energy transferred = power × time	allow E = P × t	1	AO1 4.3.2.3
03.4	energy = $1000 \times 2 \times 60$ = $120\ 000$ J energy transferred = mass × specific latent heat of vaporisation $120\ 000$ = mass × $365\ 000$ mass = $\frac{120000}{365000}$ = 0.33 kg	allow E = mL	1 1 1 1	AO2 4.3.2.3
03.5	an overestimate (the energy transferred to vaporise the water is lower because) some energy is transferred to the thermal energy store of the surroundings.		1 1	AO2 4.3.2.3
03.6	a line that starts at 20 °C steeper than the original line becomes horizontal at 70 °C at about 2 minutes.		1 1 1	AO2

AQA GCSE Science Combined Higher

Practice answers

P5

Question	Answers	Extra information	Mark	AO / Specification reference
04.1	energy = power × time	allow $E = P \times t$	1	AP1
04.2	2kW = 2000 W		1	A01
	2 minutes = 120 seconds		1	AO2
	energy = 2000 × 120		1	4.1.1.4
	= 240 000 J		1	4.3.2.3
04.3	change in mass = 1.276 - 1.180 = 0.096 kg		1	AO1
	energy transferred = specific latent heat × change in mass	allow E = mL		
	240 000 J = specific latent heat of vaporisation × 0.096 kg		1	
	specific latent heat of vaporisation = $\frac{240000}{1000}$		1	
	$\frac{1}{0.096}$		1	
	= 2 500 000 J/kg		1	
	= 2500 kJ/kg			
04.4	the energy transferred was heating the material of the kettle/air around it as well as vaporising the water		1	AO2
	a lower mass of water vaporised than should have been the case			4.3.2.3
			1	
	so the value calculated was bigger than the textbook value		1	
05.1	specific latent heat is the energy required to change the state of 1 kg of a		1	AO1
	substance			4.3.2.2
	specific heat capacity is the energy required to change the temperature of 1 kg of a substance by 1 °C		1	4.3.2.3

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

P5

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	energy to raise temperature = specific heat capacity × mass × change in	allow E = m c $\Delta \theta$		AO1
	temperature	allow 1230 with no	1	4.3.2.2
	= 2460 × 0.01 × 50 = 1230 J	substitution for two marks	1	4.3.2.3
	energy to vaporise = mass × specific latent heat	allow E = mL	1	
	= 0.01 × 838 000 = 8380 J	allow 8380 with no substitution for	1	
	the energy required to vaporise the ethanol is bigger (about seven times bigger) than the energy required to raise the temperature by 50 °C	two marks allow any valid comparison e.g., the difference	1	
05.3	the energy required to break the bonds between particles in a liquid is		1	A01
	much bigger than the energy required to make particles in a liquid move			4.3.2.2
	faster			4.3.2.3
	the energy to break bonds is related to the specific latent heat, so the specific latent heat of vaporisation is bigger		1	
06.1	(when the student is in the shower) water evaporates to make water vapour		1	AO1 AO2
	the water vapour condenses when it comes in contact with the colder mirror		1	4.3.1.2
	and energy is transferred to the mirror			

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

Question	Answers	Extra information	Mark	AO / Specification reference
06.2	for converting all kJ to J, cm to m		1	AO1
	the mass of water that condenses =energy			AO2
	specific latent heat of vaporisation		1	4.3.1.1
	= 730000		1	4.3.2.3
	2265000			
	= 0.322 kg		1	
	mass = density × volume		1	
	volume of water = $\frac{0.322}{1 \times 10^{-8}}$ = 0.000 322		1	
	volume = area x thickness			
	thickness of water = $\frac{0.000322}{0.6 \times 0.6}$ = 8.95×10 ⁻⁴ m			
07.1	the particles in a solid are arranges in a regular pattern/array		1	AO2
	the particles in a gas are moving in all/random direction		1	
	the particles in a solid are vibrating about a fixed position		1	
	the particles in a gas are moving quickly		1	
07.2	the particles collide with the walls of the container		1	AO3
	each particle exerts a force on the wall		1	
	pressure is force per unit area		1	
	the total force of all the collisions of the particles per unit area is the		1	
	pressure			

P5

Question	Answers	Extra information	Mark	AO / Specification reference
07.3	pressure on y-axis, temperature on x-axis		1	A01
	straight line with positive gradient		1	AO2
	that intercepts y-axis above zero (does not need to be extrapolated)		1	4.1.2.1
08.1	the steam is at a high temperature (and in the gas state) steam transfers latent heat energy to the milk (steam cools/changes to a liquid state and the temperature of the milk rises)		1 1	AO1 AO2 4.3.2.2 4.3.2.3
08.2	convert 242 g to 0.242 kg, and 3.93 kJ/kg °C to 3930 J/kg °C temperature difference = $70 - 20 = 50$ °C energy required = mass × specific heat capacity × change in temperature = $0.242 \times 3930 \times 50$ = 47 553 J (\approx 48 000 J so about 48 kJ)	allow E = m c $\Delta \theta$	1 1 1 1	AO1 AO2 4.3.2.2 4.3.2.3
08.3	convert 2260 kJ/kg to 2260 000 J/kg energy = mass × specific latent heat of vaporisation 47 553 = mass × 2 260 000 mass = $\frac{47553}{2260000}$ = 0.02 kg	allow E = mL	1 1 1 1	AO2 4.3.2.3
08.4	assume that all of the energy transferred to the milk to heat it comes from the change of state of the steam		1	AO2 4.3.2.3

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
09.1	В		1	AO1
	D		1	4.3.1.2
	the temperature isn't changing/doesn't change		1	
	even though the substance is being heated		1	
09.2	solid		1	A01
	it changes state twice/goes from solid to liquid, then liquid to gas		1	4.3.1.2
09.3	A		1	A01
				4.3.1.2
09.4	C		1	A01
	E		1	4.3.1.2
10.1	volume = 5 ³		1	A01
	$= 125 \text{ cm}^3$		1	4.3.1.2
10.2	density – mass		1	A01
	density = $\frac{mass}{volume}$			AO2
			1	4.3.1.1
	$1.5 = \frac{\text{mass}}{125}$			
	$mass = 1.5 \times 125 cm^3$		1	
	= 187.5g		1	
10.3	sublimation		1	A01
				4.3.1.2
10.4	if the process is reversed, the material recovers its original properties		1	A01
				4.3.1.2

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.5	the internal energy of the gas is bigger than the internal energy of the		1	AO2
	solid the particles have more kinetic energy/are moving faster		1	4.3.2.1
11.1	one mark for correct symbol		2	A01
	one mark for correct label			4.2.1.1
11.2	(when they put the test tube into iced water) the temperature of the		1	AO1
	water decreases			AO2
	the resistance of the thermistor increases		1	4.2.1.4
	the potential difference across the thermistor increases		1	
	V _{out} decreases		1	
	because the total potential difference across the thermistor and the resistor = 12 V at all times		1	
11.3	find the potential difference across the resistor by measuring V_{out}		1	A01
	find potential difference across thermistor by subtracting V_{out} from 12 V			AO2
	use $\frac{potential difference across the resistor}{potential difference across the thermistor} =$		1	4.2.2
	resistanceof resistor resistanceof thermistor		1	
	use a graph/table of the resistance of the thermistor at different temperatures to work out the temperature of the water.		1	
11.4	sensible suggestions e.g., the human body continually generates thermal energy, but the water in the test tube does not.		1	AO3