

P4

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	one mark for 'A' in correct place one mark for 'V' in the correct place one mark for resistor labelled correctly one mark for variable resistor labelled correctly		4	AO1 4.2.1.1
01.2	the rate of flow of charge/charge flowing per second		1	AO1 4.2.1.2
01.3	resistance = $\frac{\text{potential difference}}{\text{current}}$ or potential difference = current x resistance	allow R = <mark>V</mark> or V = IR	1	AO1 4.2.1.3
01.4	$R = \frac{6}{0.3}$ = 20 unit = Ω	accept 20 with no working for the two calculation marks	1 1 1	AO2 4.2.1.3
02.1	circuits A and C are parallel circuits	no marks if more than one box ticked	1	AO1 4.2.2

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
02.2	A, C	both letters	1	AO2
	B, D	(in either	1	4.2.2
	B, D	order)	1	
		needed for		
		the mark in each case		
		each case		
02.3	no the bulbs will be the same brightness		1	AO2
	because they are in a series circuit		1	4.2.2
			1	
03	Level 3: Correct diagrams with description of measurements (total current and		5-6	AO3
	potential difference) to be taken in each circuit. Rearrangement of equation to			4.2.4.3
	give an equation for resistance. Correct statement about relative magnitudes of			
	equivalent resistances.			
	Level 2: Diagrams or description of measurements (total current and potential		3-4	
	difference) to be taken in each circuit lacking one or two details. Evidence of use			
	of equation involving current, potential difference, and resistance. Correct			
	statement about relative magnitudes of equivalent resistances			
	Level 1: One correct diagram. Either potential difference or current		1-2	
	measurement mentioned. Little or no evidence of use of equation. Little or no			
	statement about the relative magnitudes of the equivalent resistances.			
	No relevant content.		0	

P4

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	 Indicative content: two correct circuits drawn with an ammeter in each circuit in an appropriate place to measure the total current, with or without a voltmeter across the battery one circuit should be a parallel circuit with a bulb in each circuit, with an ammeter in the circuit closest to the cell the other circuit should be a single circuit with two bulbs and one ammeter you need to measure the total current in each circuit and the potential difference of the supply you use the equation potential difference = current × resistance rearrange to give resistance = potential difference to calculate the equivalent resistance of the series circuit the equivalent resistance of the series circuit is bigger than the equivalent resistance of the parallel circuit 			
04.1	as the temperature increases, the resistance decreases		1	AO1 4.2.1.4
04.2	the reading on the voltmeter will not change it is connected directly across the battery/there is only one component (other than the battery)		1 1	AO2 4.2.2

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
04.3	the potential differences across resistors in a series circuit are in the same		1	AO2
	proportion as the size of the resistances			4.2.2
	there is $\frac{8V}{12V}$ across the thermistor, which is $\frac{2}{3}$		1 1	
	so the resistance of the thermistor is 20 k Ω		1	
	this happens when the resistance is very cold		1	
	there is $\frac{3V}{12V}$ across the thermistor, which is $\frac{1}{4}$		1	
	so the resistance of the thermistor is 3.3 k Ω		1	
	this happens when the resistance is very hot			
05.1	potential difference = 6 - 4	accept 2 V	1	AO2
	= 2 V	with no working for two marks	1	4.2.2
05.2	potential difference = current × resistance			A01
	4 = 0.2 × resistance		1	AO2
	resistance = $\frac{4}{0.2}$		1 1	4.2.1.2
	= 20 Ω			

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
05.3	$R = \frac{2}{0.2}$		1 1	AO2 4.2.2
	= 10 Ω		or	4.2.2
	or		1	
	total resistance = $\frac{6}{0.2}$ = 30 Ω		1	
	so resistance of resistor = 30 - 20 = 10 Ω			
05.4	decrease		1	AO2
	adding a resistor in series increases the total resistance of the circuit so less current will flow		1	4.2.2
06.1	component A		1	AO2 4.2.1.4
06.2	evidence of reading current and potential difference from the graph e.g., current = 0.5 A, potential difference = 5.0 V potential difference = current × resistance	any correct pair of readings are	1	AO1 AO2 4.2.1.2
	resistance = $\frac{\text{potential difference}}{\text{current}}$	suitable	1	
	$=\frac{5.0V}{0.5A}$		1	
	= 10 (Ω)			

P4

Question	Answers	Extra information	Mark	AO / Specification reference
06.3	as the potential difference increases, the resistance of component A stays the same so the ratio of all the $\frac{\text{potential difference}}{\text{current}}$ readings stays the same (= 10 (Ω)) as the potential difference increases, the resistance of component B increases the ratio of the $\frac{\text{potential difference}}{\text{current}}$ readings increases, from $\frac{1.0}{0.2} = 5 \Omega$ to $\frac{3.0}{0.4}$ = 7.5 Ω	do not accept any answer involving gradient of the lines	1 1 1 1	AO2 4.2.1.4
06.4	at 3.0 V, total current = 0.3 A + 0.4 A = 0.7 A		1	AO2 4.2.2
06.5	resistance = $\frac{V}{I}$ = $\frac{3}{0.7}$ = 4.3 (Ω)		1	AO2 4.2.2
07.1	4.0 A = 1.5 A + 0.5 A + current current = 2.0 A		1 1	AO2 4.2.2
07.2	the total current thorough the cell is equal to the sum of the currents in the branches/loops/current splits at junctions		1	AO1 4.2.2
07.3	12 V		1	AO2 4.2.2

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
07.4	the potential difference across components in parallel is the same		1	AO1 4.2.2
07.5	R_2 has the bigger resistance the potential differences across both resistors are the same the current in R_2 is smaller than the current through R_1 a smaller current means a bigger resistance if the potential difference is the same, so R_2 has the biggest resistance.		1 1 1 1	AO2 4.2.1.2
08.1	charge = current × time	accept Q = It	1	AO1 4.2.1.2
08.2	charge = 2 × 25 = 50 Coulombs (C)	accept 50 with no working for two calculation marks	1 1 1	AO1 AO2 4.2.1.2
08.3	increased (the resistance)		1	AO2 4.2.1.3
08.4	decreased if the current is smaller, the charge flowing in the same time will be smaller		1 1	AO2 4.2.1.2

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
09.1	charge = current × time $0.6 = 15 \times 10^{-3} \times time$ time = $\frac{0.6}{15 \times 10^{-3}}$ = 40 s	accept Q = It award one mark for 0.04 s (not converting from mA)	1 1 1	AO1 4.2.1.2
09.2	a graph labelled mass on x-axis, resistance on y-axis curved shape with decreasing gradient	one mark for a graph labelled mass on x- axis and resistance on y-axis one mark for curved shape with decreasing gradient	2	AO3 4.2.1.2

P4

Question	Answers	Extra information	Mark	AO / Specificatior reference
09.3	as the mass of salt increases, the current increases		1	AO2
	the potential difference is constant/6V		1	AO3
	$R = \frac{V}{I}$, so the resistance will decrease (as mass increases)		1	4.2.1.2
	the current increases at a decreasing rate, so the resistance will decrease at a		1	
	decreasing rate			
	from 25 g to 30 g, the resistance decreases from 400 Ω to 240 Ω		1	
	from 75 g to 80 g, the resistance decreases from 150 Ω to 146 Ω		1	
10.1	graph should show that resistance initially drops sharply, but begins to gradually	one mark	3	AO2
	plateau as light intensity increases	for light		4.2.1.4
	the curve should be a smooth arch showing a negative correlation	intensity on		
		x-axis and		
		resistance		
		on y-axis one mark		
		for correct		
		units		
		one mark		
		for correct		
		shape of		
		graph		
10.2	sensible suggestion e.g., street lights, security lights		1	A02
				4.2.1.4

P4

Question	Answers	Extra information	Mark	AO / Specification reference
10.3	description of how it is used		2	AO2
	appropriate circuit diagram		1	
	explanation of why it is needed		2	
	e.g.,			
	turning the lights on in a house when it gets dark outside			
	connect up the light dependent resisitor in a circuit with a resistor and a battery			
	circuit diagram with labelled components use the output potential difference across the light dependent resistor or the			
	resistor to switch on the lights			
	as the light level changes, the changing resistance produces a changing potential difference			
	which can be used to turn on the lights when the potential difference reaches a certain level			

P4

Question	Answers	Extra information	Mark	AO / Specification reference
11.1	points should be plotted at the following co-ordinates: (5, 1.5), (10, 3.8), (15, 4.6), (20, 5.9), (25, 7.8) line of best fit should be straight	one mark for three or four points plotted correctly two marks for all points plotted correctly one mark for appropriate scales on correctly labelled axes one mark for appropriate line of best fit	4	AO2 4.2.1.3
11.2	independent variable = length dependent variable = resistance control variable = type of metal/diameter of wire/temperature of wire		1 1 1	AO3 4.2.1.3

Practice answers

P4

Question	Answers	Extra information	Mark	AO / Specification reference
11.3	6.8 (Ω)	accept values between 6.5 and 7.3 (Ω)	1	AO2 4.2.1.3
11.4	take repeat measurements and calculate/plot the average/mean of repeat measurements		1	AO3 4.2.1.3
11.5	both students A and B are correct the line is straight (so it is linear) and goes through (0,0) (so it is directly proportional)		1 1 1	AO3 4.2.1.3