Practice answers

P3

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	the potential difference of the mains electricity in the UK is – about 230 V		1	A01
	the frequency of mains electricity in the UK is – 50 Hz		1	4.2.3.1
	the mains supply in the UK produces a current that is – alternating		1	
01.2	Earth or neutral		1	AO1
	Earth; neutral in any order	either order	1	4.2.3.1
	live; neutral in any order	either order	1	
01.3	if the casing on an appliance becomes live, the earth wire conducts the	do not accept 'for safety'	1	A01
	current safely to earth	do not accept 'to protect the user'		4.2.3.1
02.1	power = potential difference × current	accept P = I \times V	1	AO1
	= 6 V × 1.5 A		1	AO2
	(= 9 W)			4.2.4.1
02.2	nower = energy		1	A01
	time			4.1.1.4
02.3	9 = energy	accept 270 with no working for	1	AO2
	30	three marks		4.2.4.2
	$energy = 9 \times 30$		1	
	= 270 (J)		1	
02.4	both devices transfer the same amount of energy		1	A02
				4.2.4.2

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

Practice answers

OXFORD
Revise

Question	Answers	Extra information	Mark	AO / Specification reference
03.1	a fault can be caused by the live wire touching the case of the fan		1	A01
	the earth wire is connected to the case		1	AO2
	providing a (low resistance) path to 'earth'		1	4.2.3.2
	so the current flows through the earth wire and not through the person		1	
	touching the case		1	
	a large current flows, so the fuse melts so the current stops flowing			
03.2	make the case of the fan out of plastic/non-conducting material		1	A01
	if the live wire touches the case the current will not travel through the case		1	AO2
	to the person			4.2.3.2
03.3	power = potential difference × current			A01
	= 230 × 4.5		1	AO2
	= 1035 W		1	4,2,4,1
	= 1000 W (to two significant figures)		1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
03.3	power = current ² × resistance energy = power × time energy = current ² × resistance × time $5.4 = 5^{2}$ was interest = 0.62	one mark for evidence of combination of two equations	1	AO1 AO2 4.2.4.1
	$5.4 = 5 \times \text{resistance} \times 0.63$ resistance = $\frac{5.4}{5^2 \times 0.63}$		1 1 1	
	= 0.3428 = 0.34 Ω (to two significant figures) or		1 or	
	$P = \frac{E}{t} \text{ and } P = I^2 \times R$ $\left(P = \frac{5.4}{0.63}\right) = 8.57 \text{ W}$		1	
	$\left(R = \frac{P}{l^2}\right) = \frac{8.57}{5^2} = 0.3428$		1 1	
	R = 0.34 Ω (to two significant figures)		1	
04.1	a transformer changes the potential difference/steps a potential difference up or down		1	AO1 4.2.4.3
04.2	Level 3 : Detailed explanation of why the National Grid uses a higher potential difference. Calculation of the current in each wire. Calculation of power loss in each wire.		5-6	AO3 4.2.4.3
	Level 2 : Explanation of why the National Grid uses a higher potential difference. Calculation of the current in each wire or an attempt at calculation of power loss in each wire		3-4	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	Level 1: Basic comments about a higher potential difference means a smaller current/less energy wasted as heat or attempt at calculating the current in one wire.		1-2	
	No relevant content.		0	
	Indicative content:			
	 transmitting power at a higher potential difference means that the current is smaller 			
	 the wires have a resistance, so they will get hot 			
	 so there is less energy transferred to the thermal store of the surroundings 			
	 at a power of 80×10⁶ W and a potential difference of 400 000V the current in the wire is: 			
	• current = $\frac{\text{power}}{\text{potential difference}} = \frac{80 \times 10^6}{400000} = 200 \text{ A}$			
	• and power loss is: $P = I^2 \times R = 200^2 \times 4 = 1.6 \times 10^5 W$			
	• At a power of 80×10 ⁶ W and a potential difference of 4000 V, the current in the wire is:			
	current = $\frac{\text{power}}{\text{potential difference}} = \frac{80 \times 10^6}{4000} = 20\ 000\ \text{A}$			
	• and power loss is: $P = I^2 x R = 20000^2 x 4 = 1.6x10^9 W$			

Practice answers

P3

Question	Answers	Extra information	Mark	AO / Specification reference
05.1	power = current × potential difference	accept $P = V \times I$	1	AO1
				4.1.1.4
05.2	potential difference of the mains = 230 V		1	AO1
	power = 2 kW = 2000 W		1	AO2
	2000 = current × 230		1	4.2.4.2
	current = $\frac{2000}{230}$		1	
	= 8.69 A		1	
	= 8.7 A (to two significant figures)		1	
05.3	potential difference = current × resistance	accept V = IR	1	AO1
				4.2.1.3
05.4	230 = 8.69 × resistance		1	AO2
	resistance = $\frac{230}{8.69}$		1	4.2.1.3
	= 26.47 Ω		1	4.2.4.1
	= 26 Ω (2 sf)		1	
	or		or	
	$2000 = (8.69)^2 \times \text{resistance}$		1	
	resistance = $\frac{2000}{2}$		1	
	8.69 ²		1	
	= 26.48 Ω		1	
	= 26 Ω (to two significant figures)		1	
05.5	energy transferred by kettle = power \times time	accept E = P × t	1	AO1
				4.2.4.2

OXFORD Revise

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.6	$E = 2000 \times 2 \times 60$		1	A01
	= 240 000 J		1	AO2
	for toaster:		1	4.2.4.2
	240 000 = 1200 × time		1	
	time = $\frac{240000}{1000}$		1	
	1200 200 seconds		1	
	= 200 seconds		-	
05.7	they both transfer energy from a chemical/nuclear energy store (in the	no mark for 'yes'		A01
	power station) to the thermal energy store (of the surroundings)		1	AO2
	hy an electric current			4.2.4.2
			1	
06.1	2000 W means 2000 joules of energy are transferred per second/unit time		1	A01
				4.2.4.2
06.2	230 V means 230 joules of energy are transferred by each coulomb of		1	A01
	charge (that flows in the circuit)			4.2.4.2
06.3	energy = power × time	accept E = P × t	1	AO1
				4.2.4.2
06.4	E = 2000 W × 5 mins × 60 s	accept 600 000 with no working for	1	AO1
	= 600 000 (J)	two calculation marks	1	4.2.4.2
06.5	energy = charge × potential difference	accept E = Q × V	1	A01
				4.2.4.2

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
06.6	600 000 = charge × 230	accept 2609 with no working for	1	AO2
	charge = $\frac{600000}{222}$	three marks	1	4.2.4.2
	230 = 2608 7 (C)		1	
07.1	National Grid		1	A01
				4.2.4.3
07.2	both transformers change the potential difference		1	A01
	the transformer near the power station/transformer 1 is a step-up transformer/increases the potential difference		1	4.2.4.3
	the transformer near the house/transformer 2 is a step-down transformer/decreases the potential difference		1	
07.3	(the energy is transferred at a high potential difference so) the current is		1	A01
	small			4.2.4.3
	so the energy/power/heat lost is small		1	
08.1	230 V for all appliances		1	A01
	this is the potential difference of the mains		1	4.2.3.1
				4.2.4.1
08.2	thermal (energy store)		1	A01
				4.2.3.1
				4.2.4.1

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.3	iron \rightarrow hairdryer \rightarrow toaster		1	AO2
	the current is proportional to the power if the potential difference is		1	4.2.4.1
	constant or I = $\frac{P}{V}$			
08.4	$2000 = 8.7^2 \times \text{resistance}$		1	AO2
	resistance = $\frac{2000}{2000}$		1	4.2.4.1
	8.7 ²			
	= 26.4		1	
	= 26 (Ω)		1	
09.1	the energy from the Sun will not run out (in the immediate future)		1	AO1
				4.1.3
09.2	4×10 ²⁶ (W)		1	AO1
				4.2.4.2
09.3	energy per year = power × time			AO2
	$= 500 \times 3.1 \times 10^{7}$		1	4.2.4.2
	$= 1.55 \times 10^{10} (J)$		1	
09.4	area needed – 7×10^{18}		1	AO2
	$\frac{1.55 \times 10^{10}}{1.55 \times 10^{10}}$		1	4.1.3
	$= 4.5 \times 10^8 (\text{m}^2)$			

Practice answers

Question			Answers		Extra information	Mark	AO / Specification reference	
10.1	power = pot 9000 = 230 x oven curren = 39 A	ential differenc × current $t = \frac{9000}{230}$	e × current			1 1 1	AO1 AO2 4.2.4.1	
10.2	toaster curr = 8.7 A the current	ent = $\frac{2000}{230}$ in the oven is ov	ver four times b	igger			1+1 1 1	AO2 AO3 4.2.4.1
10.3	the current is very large, so the heating effect is very big the wire needs to be thicker so that there is less resistance and so less heating in the wire/the wire does not melt						1	AO2 4.2.4.1
10.4	there is an earth wire connected to the casing of an appliance through which current flows if the casing becomes live/connected to the live wire						1 1	AO1 AO2 4.2.3.2
11.1	Metal rod 1	Time for nail to fall off in s	Time for nail to fall off in s	Time for nail to fall off in s	Mean time for nail to fall off in s	one mark for evidence of metal rod as independent variable/in the first column one mark for evidence of repeat readings one mark for evidence of calculation of mean	3	AO1 AO2 4.1.2.1

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
11.2	 two from: distance of nail from end of rod Bunsen burner, type/air hole position/position on rod amount of wax on nail size/material/mass of nail initial temperature of nail 	one mark for each correct answer up to a maximum of two marks	2	AO3 4.1.2.1
11.3	the control variables are difficult to control leading to a big uncertainty in the data produced		1 1	AO3 4.1.2.1
11.4	use a different method for working out when the end of the rod has got hot e.g., thermal paint, temperature sensor attached to the rod		1	AO3 4.1.2.1
12.1	$(E_p = 0.5 \times k \times e^2)$ = 0.5 × 500 × 0.01 ² = 0.025 J	accept 0.025 (J) with no working for two marks	1 1	AO2 4.1.1.2
12.2	at the top of the first bounce there is more energy in the gravitational potential energy store at the top of the second bounce the energy has been transferred to a gravitational potential energy store and the thermal energy store of the surroundings there is less energy in the gravitational potential energy store, so the second bounce is not so high		1 1 1	AO1 AO2 4.1.1.1 4.1.1.2
12.3	energy is transferred by forces/mechanically and by heating		1 1	AO1 AO2 4.1.1.1

