AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	chemical store		1	AO2
	(associated with/of) the food/in her muscles		1	4.1.1.1
01.2	$E = \frac{1}{2} \times k \times e^2$			AO2
	$= 0.5 \times 20 \times (0.2)^2$		1	4.1.1.2
	= 0.4 (J)		1	
02.1	created or destroyed		1	A01
				4.1.2.1
02.2	there is no net change to the total energy		1	A01
				4.1.2.1
02.3	is not		1	AO1
				4.1.2.1
02.4	energy is transferred out of the system	accept energy is wasted/dissipated	1	AO2
	because it no longer has kinetic energy/potential	accept change to either kinetic or potential	1	4.1.2.1
	energy/mechanical energy	energy		
03.1	the height of the ball when she drops it	accept energy is wasted/dissipated	1	A01
	the mass of the ball	accept change to either kinetic or potential	1	4.1.1.2
	the rebound height of the ball after the first bounce	energy	1	
	measure heights with a ruler/video analysis		1	
	measure mass with a digital balance		1	

Question	Answers	Extra information	Mark	AO / Specification reference
03.2	the ball is moving quickly, so the height of the bounce is		1	AO2
	difficult to measure precisely/accurately use a video camera to video the experiment		1	4.1.1.2
03.3	 plan: use gravitational potential energy = mgh to calculate the 		1	AO1 4.1.1.2
	initial gravitational potential energy		1	
	 use the same equation to calculate the final gravitational potential energy 		1	
	 use height after first bounce, mass, and g 		1	
	 subtract the final gravitational potential energy from the initial gravitational potential energy to find the energy transferred to the floor/surroundings 		1	
03.4	either yes because the energy 'wasted'/dissipated/transferred to the surroundings	justification must match the answer	1 1	AO3 4.1.2.1
	or			
	no			
	because the ball is not doing anything useful in terms of energy			
04.1	$E_{\kappa} = 0.5 \times mass \times (speed)^2$	accept $E_k = 0.5 mv^2$	1	AO1 4.1.1.2

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
04.2	$E_{\rm K} = 0.5 \times 40 \times (10)^2$		1	AO2
	= 2000 J		1	4.1.1.2
04.3	elastic potential energy = $0.5 \times \text{spring constant} \times \text{extension}^2$			AO2
	$2000 = 0.5 \times 20\ 000 \times e^2$		1	4.1.1.2
	$e^{2} = \frac{2000}{0.5 \times 20000}$ $e^{2} = 0.2$		1	
	e = 0.45m		1	
04.4	actual compression is less because some energy from the kinetic energy store is transferred by sound/to the thermal energy store of the surroundings		1 1 1	AO3 4.1.1.1
05.1	energy in the elastic potential energy store is transferred to the kinetic energy store energy is transferred due to work done by forces		1 1 1	AO1 AO2 4.1.1.1 4.1.1.2
05.2	elastic potential energy = $0.5 \times \text{spring constant} \times \text{extension}^2$ = $0.5 \times 10^5 \times (0.05)^2$ = 125 J		1 1	AO2 4.1.1.2
05.3	video analysis	accept any sensible suggestion	1	AO2

Question	Answers	Extra information	Mark	AO / Specification reference
05.4	less energy is stored than predicted because the extension is		1	AO2
	less than 5 cm/the spring constant is less than 10 ⁵ N/kg			AO3
				4.1.1.2
05.5	the thermal energy store of the surroundings		1	AO1
				4.1.1.1
06.1	the streamlined shape reduces the energy transferred to the		1	AO2
	surroundings/dissipated			4.1.2.1
06.2	$E_{K} = 0.5 \times mass \times (speed)^{2}$	accept $E_k = 0.5 mv^2$	1	AO1
06.3	$E_{\rm K} = 0.5 \times 700\ 000 \times (90)^2$		1	AO2
	= 2 835 000 000 J		1	4.1.1.2
	= 2 835 000 kJ		1	
	= 2 840 000 kJ		1	
06.4	2 840 000 kJ	accept 2 835 000 000 (J)	1	AO2
07.1	energy is transferred from the gravitational potential energy		1	AO1
	store to the kinetic energy store		1	AO2
				4.1.1.1
07.2	work done by (gravitational) forces		1	AO2
				4.1.1.1

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
07.3	the gravitational potential energy depends on mass, gravitational field strength and height the mass and height are the same if the gravitational field strength is less then there is less energy in the gravitational potential energy store so less energy is transferred to the kinetic store so the hammer ends up going slower on the Moon than the Earth	accept g on Earth is bigger, so gravitational potential energy is bigger, so kinetic energy is bigger, so speed is bigger	1 1 1 1	AO3 4.1.1.1 4.1.1.2
08.1	gravitational potential energy = mass × gravitational field strength × height	accept gpe = mgh	1	AO1
08.2	height = 4 floors = 4 × 3 = 12 m gpe = mgh = 1220 × 9.8 × 12 = 143 472 = 145 000 (J)		1 1	AO2 4.1.1.2
08.3	efficiency = $\frac{usefuloutputenergytransfer}{totalinputenergytransfer}$		1	AO1 4.1.2.2
08.4	280 kJ = 280 000 J efficiency = $\frac{143472}{280000} \times 100$ = 51(.2)(%)	accept 51% with no working shown for three marks	1 1 1	AO1 AO2 4.1.2.2

Question	Answers	Extra information	Mark	AO / Specification reference
08.5	measure the mass of an object in the lift/and the lift measure the number of floors it moves up in a certain measured time. either: calculate the gravitational potential energy as before calculate the energy transferred using energy = power × time calculate efficiency using efficiency = $\frac{\text{usefuloutputenergytransfer}}{\text{totalinputenergytransfer}}$ or: calculate the gravitational potential energy as before calculate the gravitational potential energy as before calculate the useful power using power = $\frac{\text{energy}}{\text{time}}$ calculate efficiency using efficiency = $\frac{\text{usefulpower output}}{\text{totalinputpower}}$		1 1 1 1	AO2 4.1.2.2
08.6	 sensible suggestion such as: difficult to measure time exactly floors may be different heights difficult to measure distance travelled exactly 		1	AO3
09.1	power = $\frac{energytransferræl}{time}$		1	AO1 4.1.1.4

Question	Answers	Extra information	Mark	AO / Specification reference
09.2	$15000 = \frac{30000}{100000}$		1	AO2
	time			4.1.1.4
	time = $\frac{30000}{15000}$		1	
	= 2 (seconds)		1	
09.3	the second truck is less powerful than the first truck		1	AO2
				4.1.1.4
09.4	gravitational potential energy store		1	A01
				4.1.1.1
10.1	energy is transferred from the gravitational potential energy		1	A01
	store		1	AO2
	to the kinetic energy store		-	4.1.1.1
				4.1.1.2
10.2	light gate		1	A01
	2			4.5.6.1.1
10.3	time = 820×10^{-3} s	convert to s	1	A01
	distance = speed × time		1	AO2
	= 1.3 × 0.82		-	AO3
	= 1.07 (m)		1	4.5.6.1.2
	assuming the speed of the ball is constant.		1	
	no, it will not fill the target.		1	

Question	Answers	Extra information	Mark	AO / Specification reference
10.4	raise the height of the ramp		1	AO3
	to increase the energy in the gravitational potential energy store and kinetic store		1	4.1.1.1
	so the ball is moving faster at B		1	4.1.1.2
	and travels further in the same time.		1	4.5.6.1.2
11.1	energy that is no longer useful/stored in less useful ways		1	AO1
				4.1.2.1
11.2	efficiency = usefuloutputenergytransfer totalinputenergytransfer		1	A01
11.3	$efficiency = \frac{12}{2}$	accept 0.6 with no working for two marks	1	AO2
	20 = 0.6	accept 60% for one mark	1	4.1.2.2
11.4	car B		1	AO3
	has a lower efficiency, so wastes more energy		1	4.1.2.2
12.1	the trolley is moving too fast		1	AO1
	light gate/motion sensor		1	
12.2	gravitational potential energy = mass × gravitational field strength × height	accept gpe = mgh	1	A01
12.3	gravitational potential energy = 0.25 × 9.8 × 0.12		1	AO2
	= 0.294 (J)		1	4.1.1.2

Question	Answers	Extra information	Mark	AO / Specification reference
12.4	no, the student is incorrect	no mark without correct reason		AO2
	because energy has been dissipated/wasted as the trolley moves down the ramp		1	4.1.2.1
	and transferred to a thermal energy store		1	
13.1	use loft insulation		1	A01
				4.1.2.1
13.2	the thicker the layer of bricks, the slower the energy is		1	A01
	transferred/the rate of energy transfer is less/less energy is			AO2
	transferred per second			4.1.2.1