AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
01.1	transverse		1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .1 \end{gathered}$
01.2	any correct wavelength - e.g., horizontally from peak to peak/trough to trough		1	$\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$
01.3	move hand up and down a smaller distance the amplitude is the distance from the middle to the top or to the bottom of a wave		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .2 \end{gathered}$
02.1	$\begin{aligned} & \text { amplitude = half the peak to trough height }=\frac{34}{2} \\ & =17 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$
02.2	$\begin{aligned} & \text { period }=\frac{1}{\text { frequency }}, 14.8 \mathrm{~s}=\frac{1}{\text { frequency }} \\ & \text { frequency }=\frac{1}{14.8} \mathrm{~s}=0.068 \mathrm{~Hz} \\ & \text { speed }=\text { frequency } \times \text { wavelength } \\ & \text { speed }=0.068 \times 342 \\ & =23(.2) \mathrm{m} / \mathrm{s} \end{aligned}$		1 1 1 1	$\begin{gathered} \text { AO2 } \\ 4.6 .1 .2 \end{gathered}$
02.3	accept values between 1.0 and $2.5 \mathrm{~cm} / 0.01-0.025 \mathrm{~m}$		1	$\begin{gathered} \mathrm{AO3} \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	AO / Specification reference
02.4	comparison of speeds and amplitudes using ratios if wave speed and amplitude are proportional, then $\frac{\text { wave speed }}{\text { amplitude }}=$ constant for ocean wave: $\frac{23.2}{17}=1.4$ (1.38) for ripple tank: $\frac{0.5}{0.02}=25$ the ratios are different, so wave speed is not proportional to amplitude	method of deciding proportionality explicitly stated or implicit	1 1 1	AO3
03.1	the surface of the water moves up and down at $90^{\circ} /$ perpendicular/at right angles to the direction of motion of the wave which moves across the pond		1	$\begin{gathered} \text { AO1 } \\ \text { 4.6.1.1 } \end{gathered}$
03.2	the air particles move backwards and forwards in the same direction as the motion of the wave so at 90° to the direction of motion of the water surface/particles on surface		1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.1 } \end{gathered}$
03.3	speed $=$ frequency \times wavelength	accept $\mathrm{v}=\mathrm{f} \lambda$ or correct rearrangements	1	A01
03.4	$\begin{aligned} & 340=400 \times \text { wavelength } \\ & \text { wavelength }=\frac{340}{400} \\ & =0.85 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$
04.1	C above a place where the coils are close together R above a place where the coils are far apart		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
04.2	distance of 1.5 m is for 3 waves because the wavelength is the distance from one compression to the next $\frac{1.5}{3}=0.5 \mathrm{~m}$		1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .1 \\ 4.6 .1 .2 \end{gathered}$
04.3	speed $=$ frequency \times wavelength	$\begin{aligned} & \text { accept } v=f \lambda \text { or } \\ & \text { correct } \\ & \text { rearrangements } \end{aligned}$	1	A01
04.4	$\begin{aligned} & 1.0=\text { frequency } \times 0.5 \\ & \text { frequency }=\frac{1.0}{0.5} \\ & =2 \\ & \mathrm{~Hz} \end{aligned}$ the person needs to move their hand in and out 2 times every second		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.1 } \\ \text { 4.6.1.2 } \end{gathered}$
05.1	sound waves		1	$\begin{gathered} \text { AO1 } \\ \text { 4.6.1.1 } \end{gathered}$
05.2	Level 3: Describes how to set up an experiment, with clear details about what would be seen, and what it shows. Answer shows clear organisation.		5-6	AO1
	Level 2: Describes the observations or an experiment with some details of what is seen or what it shows. Answer shows some organisation.		3-4	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .1 \\ 4.6 .1 .2 \end{gathered}$
	Level 1: Describes experiments or observations with limited detail. Answer shows poor organisation.		1-2	4.6.1.3
	No relevant comment.		0	

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
	Indicative content: - you can show that water waves do not transfer water by putting a floating object on the surface of the water - as the ripple moves past the object moves up and down - it does not move forward, showing that the wave does not transfer water - you can show that sound waves do not transfer air by putting a candle/suspending a very light ball in front of a loudspeaker - as the sound wave moves through the candle/ball moves backwards and forwards - it does not move forward, showing that the wave does not transfer air			
06.1	light from the flash of the gun travels instantaneously/very fast/takes no time to reach the scientist		1	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$
06.2	distance between him and the gun time between seeing the flash of the gun and hearing the sound		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO1 AO2 4.6.1.2
06.3	$\begin{aligned} & \text { fractional difference }=\frac{478.4-340}{340} \\ & =\frac{138.4}{340} \\ & =0.41 \\ & 0.41 \times 100=41 \% \end{aligned}$	either showing $\times 100$ in calculation or finding decimal and multiplying by 100	1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
06.4	the cannons are 29000 m apart $\begin{aligned} & \text { speed }=\frac{\text { distance }}{\text { time }} \\ & 332=\frac{29000}{\text { time }} \\ & \text { time }=\frac{29000}{332} \\ & =87(.3) \mathrm{s} \end{aligned}$		1 1 1 1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
06.5	may be much longer time period as 29 km distance very long but original distance not quoted so reaction time produces less error/easier to make precise measurement of a long time interval.	alternative: both measurements are sound not one light and one sound, not relying on long distance vision/hard to see flash at distance	1 1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.1.2 } \end{gathered}$
07.1	the wires are connected to a power supply, and are close to water/exposed wires in contact with water can cause a shock ensure wires are insulated and not in contact with the water		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO2
07.2	frequency (Hz) wavelength (m)	units must be included for each mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	AO / Specification reference
07.3	frequency: number of waves passing a point and divide by 10 or $=\frac{5}{10}=0.5 \mathrm{~Hz}$ the frequency is the number of waves per second. wavelength: divide 0.2 m by 15 or $=\frac{0.2}{15}=0.013 \mathrm{~m}$ the wavelength is the distance between two points on the same wave.		1 1 1 1	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$
07.4	speed $=$ frequency \times wavelength	accept $v=f \lambda$ or correct rearrangements	1	AO1
07.5	$\begin{aligned} & \text { frequency }=\frac{5}{10}=0.5 \mathrm{~Hz} \\ & \text { wavelength }=\frac{0.2}{15}=0.0133 \mathrm{~m} \\ & \text { wave speed }=0.5 \times 0.0133 \\ & =7 \times 10^{-3} \mathrm{~m} / \mathrm{s}(0.0067) \end{aligned}$ the smallest number of significant figures given in the question data is 1 (5 waves)	one mark for answer to one significant figure one mark for standard form	1 1 1 2 1	$\begin{gathered} \text { AO2 } \\ 4.6 .1 .2 \end{gathered}$
08.1	independent: length (of ruler) dependent: deflection control variable - two from mass, position of mass, type of ruler		$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
08.2	appropriate method, e.g., - fix another ruler behind the ruler and measure the deflection - change the length of the ruler a number of times and measure again - repeat the experiment three times for each length, take the average of repeat readings		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & 4.5 .3 \end{aligned}$
08.3	if the deflection is proportional to the length, then doubling the length should double the deflection looking at results for lengths of 0.2 m and 0.4 m the deflection increases from 3.5 to 4.2, which is not double		1 1	$\begin{aligned} & \text { AO3 } \\ & 4.5 .3 \end{aligned}$
08.4	for example: - how does the mass affect the deflection of the ruler? - how does the position of the mass affect the deflection of the ruler?	accept any sensible suggestion	1	$\begin{aligned} & \text { AO2 } \\ & 4.5 .3 \end{aligned}$
09.1	zero		1	$\begin{gathered} \text { AO2 } \\ 4.5 .6 .1 .3 \end{gathered}$
09.2	distance $=4.5 \times 1609=7240.5(\mathrm{~m})$	accept 7241	1	AO1
09.3	$\begin{aligned} & \text { distance }=7240.5 \times 2=14481 \mathrm{~m} \\ & \text { time }=20 \mathrm{~min} \times 60 \mathrm{~s}=1200 \mathrm{~s} \\ & \text { speed }=\frac{\text { distance }}{\text { time }} \\ & =\frac{14480}{1200} \\ & =12(.07) \mathrm{m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.1.2 } \end{gathered}$
10.1	the speed varies over the journey, but the calculation uses total distance/total time which gives average speed		1	$\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .1 .2 \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
10.2	stride length		1	$\begin{gathered} \mathrm{AO3} \\ 4.6 .1 .2 \end{gathered}$
10.3	number of strides per minute frequency is the number of waves per unit time		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.6 .1 .2 \end{gathered}$
10.4	in part (a), to work out the speed, you multiplied the number of strides per minute by the stride length which is equivalent to multiplying the frequency by wavelength which is the same as using the wave equation		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ 4.6 .1 .2 \end{gathered}$
11.1	one wave in five squares each square is 0.1 ms period $=5 \times 0.0001$ $=5 \times 10^{-4} \mathrm{~s}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$
11.2	speed $=$ frequency \times wavelength	accept $\mathrm{v}=\mathrm{f} \lambda$ or correct rearrangements	1	AO1
11.3	$\left.\begin{array}{l} \text { frequency }=\frac{1}{\text { period }} \\ =\frac{1}{5 \times 10^{-4}} \\ =2000 \mathrm{~Hz} \end{array}\right\} \begin{aligned} & 340=2000 \times \text { wavelength } \\ & \text { wavelength }=\frac{340}{2000} \\ & =0.17 \mathrm{~m} \end{aligned}$		1 1 1	$\begin{gathered} \text { AO2 } \\ \text { 4.6.1.2 } \end{gathered}$

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	\qquad
11.3	$\begin{aligned} & \text { amplitude }=3 \text { squares } \\ & 3 \text { squares } \times 2 \mathrm{~V} \text { per square }=6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.6.1.1 } \end{gathered}$
12.1	the time for one complete wave		1	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.6 .1 .2 \end{gathered}$
12.2	$\begin{aligned} & \text { time period }=1 \text { millisecond }=0.001 \mathrm{~s} \\ & \text { frequency }=\frac{1}{\text { time period }} \\ & =\frac{1}{0.001} \\ & =1000 \mathrm{~Hz} \end{aligned}$	allow $10^{-3} \mathrm{~s}$	1 1 1	$\begin{gathered} \mathrm{AO2} \\ 4.6 .1 .2 \end{gathered}$
12.3	speed $=$ frequency \times wavelength	allow $\mathrm{v}=\mathrm{f} \lambda$ or correct rearrangements	1	AO1
12.4	$\begin{aligned} & \text { speed } \\ & =1000 \mathrm{~Hz} \times 0.34 \mathrm{~m} \\ & =340 \mathrm{~m} / \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.6.1.2 } \end{gathered}$
13.1	voltmeter		1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.2.1.3 } \end{gathered}$
13.2	potential difference $=$ current \times resistance	allow $\mathrm{V}=\mathrm{IR}$ or correct rearrangements	1	A01

AQA GCSE Science Combined Higher

Question	Answers	Extra information	Mark	AO / Specification reference
13.3	$\begin{aligned} \text { potential difference } & =0.15 \times 10 \\ & =1.5 \mathrm{~V} \end{aligned}$	allow 1.5 with no substitution for two marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.3 } \end{gathered}$
13.4	charge $=$ current \times time	$\begin{aligned} & \text { allow } \mathrm{Q}=\text { It or } \\ & \text { correct } \\ & \text { rearrangements } \end{aligned}$	1	A01
13.5	$\begin{aligned} & \text { charge }=0.15 \times 60 \\ &=9 \\ & \text { C/coulombs } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.2.1.2 } \end{gathered}$
13.6	it would increase the potential difference has increased (but the clock resistance is the same)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO1 AO2 4.2.1.3
14	Level 3: Well organised answer with descriptions of reasons for calculations. Equations for power, efficiency and gravitational potential energy used.		5-6	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.1.1.2 } \\ \text { 4.1.1.4 } \end{gathered}$
	Level 2: Some relevant calculations, but descriptions lacking detail or missing, or parts of calculations/conversions incorrect.		3-4	
	Level 1: Some relevant calculations completed, but unit conversions may be missing and no explanation of method.		1-2	
	No relevant content.		0	

AQA GCSE Science Combined Higher

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Answers \& Extra information \& Mark \& \qquad

\hline \& \begin{tabular}{l}
Indicative content:

- calculate energy needed to be transferred to bulb:
energy $=$ power \times time
$=0.24 \times 60$
$=14.4 \mathrm{~J}$

- energy transferred to motor must be greater than this because the generator is only 90% efficient
efficiency $=\frac{\text { energy out }}{\text { energy in }} \times 100$
$90=\frac{14.4}{\text { energy in }} \times 100$
energy in $=\frac{14.4}{90} \times 100$

$$
=16 \mathrm{~J}
$$

- this energy is transferred by the falling mass
gravitational potential energy $=$ mass \times gravity \times height
$16=0.3 \times 9.8 \times$ height
height $=5.4 \mathrm{~m}$
\end{tabular} \& \& \&

\hline
\end{tabular}

