

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	 suitable method, e.g., attach trolley to string with hanging mass over pulley or diagram keep force constant use motion sensor/light gates to measure velocities and times/acceleration change mass measure acceleration repeat several times and find mean 	accept diagram illustrating answer	1 1 1 1 1	AO1 AO2 4.5.6.2.2
01.2	Newton's second law says that the acceleration of an object is proportional to the (net) force and inversely proportional to the mass		1	AO1 4.5.6.2.2
01.3	inertia is the tendency of objects to continue in their state of rest or in uniform motion/a measure of how difficult it is to change the velocity of an object		1	AO1 4.5.6.2.2
01.4	if the acceleration is inversely proportional to mass, then doubling the mass will halve the acceleration the acceleration for a mass of 0.1 kg is 40 and half of 40 is 20		1	AO3 4.5.6.2
01.5	yes friction would reduce the resultant force which would produce an acceleration smaller than predicted by Newton's second law		1 1 1	AO2/1 AO3 4.5.6.2.2
02.1	no there is no resultant force acting on the puck		1 1	AO1 AO2 4.5.6.2.1

Question	Answers	Extra information	Mark	AO / Specification reference
02.2	no		1	A01
	the puck does not carry the force/you need to apply a resultant force in the opposite direction (for it to stop)		1	AO2
				4.5.6.2.1
02.3	no		1	A01
	the force on the puck of the stick is the same magnitude as the force of the stick on the puck		1	AO2
				4.5.6.2.3
02.4	yes		1	AO3
	the speed does not change, but the direction does, so the velocity changes		1	4.5.6.2.2
	and it accelerates			
03.1	resultant force = mass × acceleration		1	AO2
	10 000 - 2000 = 8400 × acceleration		1	AO3
	acceleration = $\frac{8000}{8400}$		1	4.5.6.2.2
	$= 0.95 \text{ m/s}^2$		1	
	no, it does not exceed the expected value		1	
03.2	mass with half a load = 8400 – 1600 = 6800 kg		1	AO2
	mass with no load = 8400 – 3200 = 5200 kg		1	AO3
	acceleration when half full = $\frac{8000}{6800}$ = 1.18 m/s ²		1	4.5.6.2
	acceleration when empty = $\frac{8000}{5200}$ = 1.54 m/s ²		1	
	it would be safe to do so with the lorry half empty		1	
	but not when the lorry is completely empty.		1	

Question	Answers	Extra information	Mark	AO / Specification reference
04.1	(1.5 N, 0.4 m/s ²)		1	AO3
04.2	line of best fit drawn		1	
04.3	systematic		1	AO3
04.4	the graph does not go through (0,0) or there is an intercept on the x-axis 0.15 N		1 1	AO3
04.5	(net) force = mass × acceleration		1	AO1 4.5.6.2.2
04.6	using a point such as (2.0, 0.9) force = 2.0 - 0.15 = 1.85 N, you need to subtract the zero error acceleration = 0.9 m/s ²	pair of values read from graph	1	AO2 4.5.6.2.2
	1.85 = mass × 0.9		1	
	$mass = \frac{1000}{0.9}$		1	
	mass = 2.05 (kg)		1	
05.1	work is done by friction/energy transferred mechanically		1	AO1 4.5.6.3.4
05.2	the brakes/the surroundings		1	AO1 4.5.6.3.4

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.3	deceleration = $\frac{\text{change in velocity}}{\text{time taken}}$ = $\frac{20}{4.3}$ = 4.7 m/s ² assuming the acceleration is constant		1 1 1 1	AO1 AO2 AO3 4.5.6.3.4
05.4	the acceleration is probably not constant because the brakes do not exert a constant force braking force = mass × deceleration			402
05.4	= 1250 × 4.7 = 5875 (= 5900 N) this is similar to the forces exerted by car engines	allow F – Illa	1 1 1	4.5.6.3.4
06.1	graph B in an emergency stop the driver presses the brake pedal harder/uses a bigger force producing a bigger deceleration at every speed the braking distance is shorter		1 1 1 1	AO2 AO3 4.5.6.3.3 4.5.6.3.4
06.2	appropriate suggestion, e.g.,internal organs can be damagedthe organs of your body continue to move	alternative: extra friction on/damage to the tyres	1	AO2 4.5.6.3.4

Question	Answers	Extra information	Mark	AO / Specification reference
06.3	no difference/it is the same at a particular speed		1	AO1
	citizations at the same speed		1	AO2
	situations at the same speed			4.5.6.3.1 4.5.6.3.2
07.1	independent – type of surface		1	AO2
	dependent – distance it travels on the surface before stopping control – any two from:		1	
	height of ramp	one mark for	2	
	 position of release of trolley 	each correct		
	type of trolley	answer up to a		
	mass of trolley	maximum of		
	mothod o g		_	
07.2	nethou, e.g.,		5	A01
	 raise one end of the ramp by a neight in cover the floor at the other end of the ramp with a type of surface. 			
	 place a trolley at the top of a ramp and releases it 			
	 measure the distance the trolley travels from the bottom of the ramp to the 			
	place that it stops			
	 repeat the experiment twice more with the same surface 			
	 replace the surface with a different material and repeat the experiment 			
	with ramp at same height h			
	 identity outliers; do not include them in the calculation of mean 			

Question	Answers	Extra information	Mark	AO / Specification reference
07.3	appropriate example with improvement e.g., releasing the trolley from exactly the same place each time improvement: draw a line on the ramp and line up the back of the trolley with the line each time.	or leaving ramp, make transition as smooth as possible by making sure the surface is at the same height as the bottom of the ramp	1 1	AO3
07.4	this is a good model because different surfaces will affect the stopping distance difference surfaces produce different frictional forces on the trolley, so do different amounts of work on it		1 1 1	AO3
07.5	the investigation does not involve braking because the trolley does not have brakes or no thinking distance can be included as no 'brain' in the trolley		1 1 or 1 1	AO2 AO3 4.5.6.3.4
08.1	weight = mass × gravitational field strength = 110 × 9.8 = 1078 N		1 1 1	AO1 AO2 4.5.6.2.2

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.2	force = mass × acceleration		1	A01
	= 110 × 2.0		1	AO2
	= 220 N		1	4.5.6.2.2
08.3	total force = 1078 + 220		1	AO2
	= 1298 N		1	4.5.6.2.2
08.4	the object will not move		1	AO3
	the upwards force is equal to the weight		1	4.5.6.2.2
	there is no resultant force		1	
09.1	the data is checked by other scientists		1	A01
	peer review		1	
09.2	force is measured in newtons/kilograms or tonnes are both a unit of mass, not		1	A01
	force			4.5.1.3
09.3	weight = mass × gravitational field strength	allow W = mg	1	A01
				4.5.1.3
09.4	W = 1000 × 9.8		1	AO2
	= 9800 N		1	4.5.1.3
09.5	people (without a science background) reading the article may be able to		1	AO3
	relate better to tonnes than to newtons.			

P10

Question	Answers	Extra information	Mark	AO / Specification reference
09.6	$momentum = mass \times velocity$ $acceleration = \frac{change in velocity}{time taken}$ $velocity = acceleration \times time = 9.8 \times 2.5$ $= 24.5 \text{ m/s}$ $momentum = 2.5 \times 24.5$ $= 61.3 \text{ kg m/s}$	Alternative method: Ft = mv – mu 2.5 x 9.8 x 2.5 = mv – 0 mv = 61.25 kg m/s	1 1 1 1	AO1 AO2
10.1	force = mass × acceleration		1	AO1 4.5.6.2.2
10.2	conversion of both masses to the same units leafhopper = $2 \times 10^{-6} \times 1000 = 2 \times 10^{-3} \text{ N}$ cheetah = $50 \times 5.0 = 250 \text{ N}$ the force produced by the cheetah is $\frac{250}{2 \times 10^{-3}} = 125\ 000$ times bigger.	substitution and answer substitution and answer	1 1+1 1+1 1	AO1 AO2 4.5.6.2.2
10.3	if acceleration is proportional to top speed then $\frac{\text{acceleration}}{\text{topspeed}} = \text{constant.}$ for the leafhopper, $\frac{\text{acceleration}}{\text{topspeed}} = \frac{1000}{4} = 250$ for the cheetah, $\frac{\text{acceleration}}{\text{topspeed}} = \frac{5}{30} = 0.17$ no, they are not directly proportional		1 1 1 1	AO3 4.5.6.2.2

© Oxford University Press <u>www.oxfordsecondary.co.uk</u> This resource sheet may have been changed from the original.

AQA GCSE Science Combined Higher

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.4	$F = 70 \times 1000$ = 70 000 N car = 40 kN = 40 000 N the suit has a force nearly twice that of a car		1 1 1 1	AO2 AO3 4.5.6.2
11.1	force = mass × acceleration A = 1611 × 4.79 = 7717 N B = 1565 × 3.78 = 5916 N C = 1864 × 5.59 = 10 420 N no, the forces produced by the engines are not the same		1 1 1 1 1	AO2 AO3 4.5.6.2.2
11.2	3000 N/3 kN		1	AO2 4.5.6.2.1
11.3	net force = -3000 N F = ma -3000 = 1565 × acceleration acceleration = $-\frac{3000}{1565}$ = -1.92 m/s ²	resistive force is negative	1 1 1	AO1 AO2 4.5.6.2