## AQA GCSE Science Combined Higher <br> Practice answers

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 01.1 | suitable method, e.g., <br> - attach trolley to string with hanging mass over pulley or diagram <br> - keep force constant <br> - use motion sensor/light gates to measure velocities and times/acceleration <br> - change mass measure acceleration <br> - repeat several times and find mean | accept diagram illustrating answer | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 01.2 | Newton's second law says that the acceleration of an object is proportional to the (net) force and inversely proportional to the mass |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 01.3 | inertia is the tendency of objects to continue in their state of rest or in uniform motion/a measure of how difficult it is to change the velocity of an object |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 01.4 | if the acceleration is inversely proportional to mass, then doubling the mass will halve the acceleration the acceleration for a mass of 0.1 kg is 40 and half of 40 is 20 |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO3 } \\ 4.5 .6 .2 \end{gathered}$ |
| 01.5 | yes <br> friction would reduce the resultant force which would produce an acceleration smaller than predicted by Newton's second law |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 / 1 \\ \mathrm{AO3} \\ 4.5 .6 .2 .2 \end{gathered}$ |
| 02.1 | no there is no resultant force acting on the puck |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO} 2 \\ 4.5 .6 .2 .1 \end{gathered}$ |

## AQA GCSE Science Combined Higher <br> Practice answers

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 02.2 | no the puck does not carry the force/you need to apply a resultant force in the opposite direction (for it to stop) |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.6.2.1 } \end{gathered}$ |
| 02.3 | no the force on the puck or the stick is the same magnitude as the force of the stick on the puck |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.6.2.3 } \end{gathered}$ |
| 02.4 | yes <br> the speed does not change, but the direction does, so the velocity changes and it accelerates |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO3} \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 03.1 | $\begin{aligned} & \text { resultant force }=\text { mass } \times \text { acceleration } \\ & 10000-2000=8400 \times \text { acceleration } \\ & \text { acceleration }=\frac{8000}{8400} \\ & =0.95 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ <br> no, it does not exceed the expected value |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \mathrm{AO} 3 \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 03.2 | mass with half a load $=8400-1600=6800 \mathrm{~kg}$ mass with no load $=8400-3200=5200 \mathrm{~kg}$ $\begin{aligned} & \text { acceleration when half full }=\frac{8000}{6800}=1.18 \mathrm{~m} / \mathrm{s}^{2} \\ & \text { acceleration when empty }=\frac{8000}{5200}=1.54 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ <br> it would be safe to do so with the lorry half empty but not when the lorry is completely empty. |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.5.6.2 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 04.1 | $\left(1.5 \mathrm{~N}, 0.4 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 1 | AO3 |
| 04.2 | line of best fit drawn |  | 1 |  |
| 04.3 | systematic |  | 1 | AO3 |
| 04.4 | the graph does not go through $(0,0)$ or there is an intercept on the $x$-axis 0.15 N |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | AO3 |
| 04.5 | (net) force $=$ mass $\times$ acceleration |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 04.6 | ```using a point such as \((2.0,0.9)\) force \(=2.0-0.15=1.85 \mathrm{~N}\), you need to subtract the zero error acceleration \(=0.9 \mathrm{~m} / \mathrm{s}^{2}\) \(1.85=\) mass \(\times 0.9\) mass \(=\frac{1.85}{0.9}\) mass \(=2.05(\mathrm{~kg})\)``` | pair of values read from graph | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 \\ 4.5 .6 .2 .2 \end{gathered}$ |
| 05.1 | work is done by friction/energy transferred mechanically |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.6.3.4 } \end{gathered}$ |
| 05.2 | the brakes/the surroundings |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.6.3.4 } \end{gathered}$ |

## AQA GCSE Science Combined Higher <br> Practice answers

| Question | Answers | Extra information | Mark | $\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 05.3 | $\begin{aligned} & \text { deceleration }=\frac{\text { change in velocity }}{\text { time taken }} \\ & =\frac{20}{4.3} \\ & =4.7 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ <br> assuming the acceleration is constant the acceleration is probably not constant because the brakes do not exert a constant force |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { AO3 } \\ 4.5 .6 .3 .4 \end{gathered}$ |
| 05.4 | $\begin{aligned} & \text { braking force }=\text { mass } \times \text { deceleration } \\ & =1250 \times 4.7 \\ & =5875(=5900 \mathrm{~N}) \end{aligned}$ <br> this is similar to the forces exerted by car engines | allow $\mathrm{F}=\mathrm{ma}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.6.3.4 } \end{gathered}$ |
| 06.1 | graph B <br> in an emergency stop the driver presses the brake pedal harder/uses a bigger force <br> producing a bigger deceleration <br> at every speed the braking distance is shorter |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO2 AO3 4.5.6.3.3 4.5.6.3.4 |
| 06.2 | appropriate suggestion, e.g., <br> - internal organs can be damaged <br> - the organs of your body continue to move | alternative: extra friction on/damage to the tyres | 1 | $\begin{gathered} \mathrm{AO2} \\ \text { 4.5.6.3.4 } \end{gathered}$ |

## AQA GCSE Science Combined Higher <br> Practice answers

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 06.3 | no difference/it is the same at a particular speed thinking distance is related to reaction time, which is the same in both situations at the same speed |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | AO1 AO2 4.5.6.3.1 4.5.6.3.2 |
| 07.1 | independent - type of surface <br> dependent - distance it travels on the surface before stopping control - any two from: <br> - height of ramp <br> - position of release of trolley <br> - type of trolley <br> - mass of trolley | one mark for each correct answer up to a maximum of two mark | $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$ | AO2 |
| 07.2 | method, e.g., <br> - raise one end of the ramp by a height $h$ <br> - cover the floor at the other end of the ramp with a type of surface <br> - place a trolley at the top of a ramp and releases it <br> - measure the distance the trolley travels from the bottom of the ramp to the place that it stops <br> - repeat the experiment twice more with the same surface <br> - replace the surface with a different material and repeat the experiment with ramp at same height $h$ <br> - identify outliers; do not include them in the calculation of mean |  | 5 | AO1 |


| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 07.3 | appropriate example with improvement e.g., releasing the trolley from exactly the same place each time improvement: draw a line on the ramp and line up the back of the trolley with the line each time. | or leaving ramp, make transition as smooth as possible by making sure the surface is at the same height as the bottom of the ramp | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | AO3 |
| 07.4 | this is a good model because different surfaces will affect the stopping distance <br> difference surfaces produce different frictional forces on the trolley, so do different amounts of work on it |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | AO3 |
| 07.5 | the investigation does not involve braking because the trolley does not have brakes or <br> no thinking distance can be included as no 'brain' in the trolley |  | 1 1 | $\begin{gathered} \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.5.6.3.4 } \end{gathered}$ |
| 08.1 | $\begin{aligned} & \text { weight }=\text { mass } \times \text { gravitational field strength } \\ & =110 \times 9.8 \\ & =1078 \mathrm{~N} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ \text { 4.5.6.2.2 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

| Question | Answers | Extra information | Mark | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| 08.2 | $\begin{aligned} & \text { force }=\text { mass } \times \text { acceleration } \\ & =110 \times 2.0 \\ & =220 \mathrm{~N} \end{aligned}$ |  | 1 1 1 | $\begin{gathered} \mathrm{AO1} \\ \mathrm{AO2} \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 08.3 | $\begin{aligned} & \text { total force }=1078+220 \\ & =1298 \mathrm{~N} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 08.4 | the object will not move the upwards force is equal to the weight there is no resultant force |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO3} \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 09.1 | the data is checked by other scientists peer review |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | AO1 |
| 09.2 | force is measured in newtons/kilograms or tonnes are both a unit of mass, not force |  | 1 | $\begin{gathered} \text { AO1 } \\ \text { 4.5.1.3 } \end{gathered}$ |
| 09.3 | weight $=$ mass $\times$ gravitational field strength | allow W = mg | 1 | $\begin{gathered} \text { AO1 } \\ 4.5 .1 .3 \end{gathered}$ |
| 09.4 | $\begin{aligned} & W=1000 \times 9.8 \\ & =9800 \mathrm{~N} \end{aligned}$ |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 \\ 4.5 .1 .3 \end{gathered}$ |
| 09.5 | people (without a science background) reading the article may be able to relate better to tonnes than to newtons. |  | 1 | AO3 |

## AQA GCSE Science Combined Higher <br> Practice answers

| Question | Answers | Extra information | Mark | AO / <br> Specification reference |
| :---: | :---: | :---: | :---: | :---: |
| 09.6 | $\begin{aligned} & \text { momentum }=\text { mass } \times \text { velocity } \\ & \text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }} \\ & \text { velocity }=\text { acceleration } \times \text { time }=9.8 \times 2.5 \\ & =24.5 \mathrm{~m} / \mathrm{s} \\ & \text { momentum }=2.5 \times 24.5 \\ & =61.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \end{aligned}$ | Alternative method: $\begin{aligned} & \mathrm{Ft}=\mathrm{mv}-\mathrm{mu} \\ & 2.5 \times 9.8 \times 2.5 \\ & =\mathrm{mv}-0 \\ & \mathrm{mv}=61.25 \mathrm{~kg} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { AO1 } \\ & \text { AO2 } \end{aligned}$ |
| 10.1 | force $=$ mass $\times$ acceleration |  | 1 | $\begin{gathered} \text { AO1 } \\ 4.5 .6 .2 .2 \end{gathered}$ |
| 10.2 | conversion of both masses to the same units <br> leafhopper $=2 \times 10^{-6} \times 1000=2 \times 10^{-3} \mathrm{~N}$ <br> cheetah $=50 \times 5.0=250 \mathrm{~N}$ <br> the force produced by the cheetah is $\frac{250}{2 \times 10^{-3}}=125000$ times bigger. | substitution and answer substitution and answer | $\begin{aligned} & 1 \\ & 1+1 \\ & 1+1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.5 .6 .2 .2 \end{gathered}$ |
| 10.3 | if acceleration is proportional to top speed then $\frac{\text { acceleratón }}{\text { topspeed }}=$ constant. for the leafhopper, $\frac{\text { acceleraton }}{\text { topspeed }}=\frac{1000}{4}=250$ for the cheetah, $\frac{\text { acceleraton }}{\text { topspeed }}=\frac{5}{30}=0.17$ no, they are not directly proportional |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { AO3 } \\ \text { 4.5.6.2.2 } \end{gathered}$ |

## AQA GCSE Science Combined Higher

| Question | Answers | Extra information | Mark | AO / <br> Specification reference |
| :---: | :---: | :---: | :---: | :---: |
| 10.4 | $\begin{aligned} \mathrm{F} & =70 \times 1000 \\ & =70000 \mathrm{~N} \\ \operatorname{car} & =40 \mathrm{kN}=40000 \mathrm{~N} \end{aligned}$ <br> the suit has a force nearly twice that of a car |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 2 \\ \mathrm{AO3} \\ 4.5 .6 .2 \end{gathered}$ |
| 11.1 | $\begin{aligned} & \text { force }=\text { mass } \times \text { acceleration } \\ & A=1611 \times 4.79=7717 \mathrm{~N} \\ & B=1565 \times 3.78=5916 \mathrm{~N} \\ & C=1864 \times 5.59=10420 \mathrm{~N} \end{aligned}$ <br> no, the forces produced by the engines are not the same |  | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO2} \\ \mathrm{AO3} \\ \text { 4.5.6.2.2 } \end{gathered}$ |
| 11.2 | 3000 N/3 kN |  | 1 | $\begin{gathered} \mathrm{AO2} \\ 4.5 .6 .2 .1 \end{gathered}$ |
| 11.3 | $\begin{aligned} & \text { net force }=-3000 \mathrm{~N} \\ & \mathrm{~F}=\mathrm{ma} \\ & -3000=1565 \times \text { acceleration } \\ & \text { acceleration }=-\frac{3000}{1565} \\ & =-1.92 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ | resistive force is negative | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \mathrm{AO} 1 \\ \mathrm{AO2} \\ 4.5 .6 .2 \end{gathered}$ |

