AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
01.1	```percentage yield: massofproductactuallymade }\times100 maximumtheoreticamassof product atom economy: relative formula massof desiredproductfromequation sumof relative formula massesof all reactantsfrom equations \times 100%```		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.3 .3 .1 \\ 4.3 .3 .2 \end{gathered}$
01.2	two from: - sustainable development/preserves Earth's resources - economic reasons - reduce waste		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.3 .3 .2 \end{gathered}$
01.3	some remains on the filter paper/is not scraped off		1	AO3
02.1	two from: - wear eye protection - use a safety screen between students and reaction - stand back immediately when reaction starts	allow any other suitable precaution	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
02.2	M_{r} of iron(III) oxide is $(2 \times 56)+(3 \times 16)=160 \mathrm{~g}$ 8.0 g of iron(III) oxide is $\frac{8}{160}=0.050 \mathrm{~mol}$ 2.7 g of aluminium is $\frac{2.7}{27}=0.10 \mathrm{~mol}$ from balanced equation, one mol of iron(III) oxide reacts with two mol of aluminium, so 0.050 mol of iron(III) oxide needs 0.10 mol of aluminium.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .2 .1 \\ 4.3 .2 .4 \end{gathered}$
02.3	from balanced equation, one mol of iron(III) oxide makes two mol of iron, so 0.050 mol of iron(III) oxide makes 0.10 mol of iron this has a mass of $0.10 \times 56=5.6 \mathrm{~g}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .1 \end{gathered}$
02.4	percentage yield: \qquad maximum theoretica massof product $\frac{4.6}{5.6} \times 100=82.1 \%$	allow error carried forward	1	$\begin{gathered} \text { AO1 } \times 1 \\ \text { AO2 } 1 \\ 4.3 .3 .1 \end{gathered}$
02.5	some of the aluminium reacts with oxygen from the air some of the iron made is not collected	allow other suitable reasons	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO3} \\ 4.3 .3 .1 \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	AO / $\begin{gathered}\text { Specification } \\ \text { reference }\end{gathered}$
03.1	number of moles of $\mathrm{NaOH}=\frac{25}{1000} \times 0.100=0.00250$ from balanced equation, one mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with two mol of NaOH , so number of moles of acid in $25.0 \mathrm{~cm}^{3}=\frac{0.00250}{2}=0.00125$ mol concentration of acid $=0.00125 \times \frac{1000}{25}=0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ $=0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \times 1 \\ \text { AO2 } \times 4 \\ 4.3 .4 \end{gathered}$
03.2	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g} \\ & \text { mass of } 0.0500 \mathrm{~mol}=0.0500 \times 98 \mathrm{~g}=4.9 \mathrm{~g} \text {, } \\ & \text { so concentration }=4.9 \mathrm{~g} / \mathrm{dm}^{3} \end{aligned}$		1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.1 } \end{gathered}$
03.3	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{NaOH}=23+16+1=40 \mathrm{~g} \\ & \text { mass of } 0.0100 \mathrm{~mol}=40 \times 0.100=4.0 \mathrm{~g} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.1 } \end{gathered}$
04.1	M_{r} of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=(2 \times 12)+(5 \times 1)+16+1=46$		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.2 } \end{gathered}$
04.3	atom economy of process $1=\frac{46}{(28+18)} \times 100=100 \%$ atom economy of process $2=\frac{(2 \times 46)}{180} \times 100=51.1 \%$ the atom economy process of 1 is approximately double that of process 2		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.3.2 } \end{gathered}$

AQA GCSE Chemistry
 Practice answers

Question	Answers	Extra information	Mark	\qquad
04.3	Level 3: The comparisons are detailed and accurate. The writing is clear, coherent and logical and comparisons are clearly made.		5-6	$\begin{gathered} \mathrm{AO3} \\ \text { 4.3.3.2 } \end{gathered}$
	Level 2: The comparisons are generally correct, although may lack detail. The writing is mainly clear, although the structure may lack logic and comparisons are not always clear.		3-4	
	Level 1: Some comparisons are correct. The writing lacks clarity, coherence and logic, and the comparisons are not clearly expressed.		1-2	
	No relevant content		0	
	Indicative content - 1 occurs at a higher temperature and pressure than 2 , so 2 is better for sustainable development in this respect - the raw material for 1 is obtained from crude oil, so 2 is better for sustainable development in this respect - 2 produces carbon dioxide, which is a greenhouse gas, so 1 is better for sustainable development in this respect - 1 has a higher atom economy than 2 , so 1 is better for sustainable development in this respect			
05.1	$\begin{aligned} & \mathrm{M}_{\mathrm{r}}=(3 \times 12)+(8 \times 1)=44 \\ & \text { number of moles }=\frac{6000}{44}=136 \mathrm{~mol} \end{aligned}$ at room temperature and pressure, one mol of gas occupies 24 dm^{3} 136 mol occupies $136 \times 24=3264 \mathrm{dm}^{3}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 1 \\ \mathrm{AO} 2 \times 3 \\ 4.3 .5 \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	$\begin{aligned} & 50 \times 5=250 \mathrm{~cm}^{3} \\ & \frac{250}{1000}=0.250 \mathrm{dm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 1 \\ \mathrm{AO} 2 \times 1 \\ 4.3 .5 \end{gathered}$
05.3	number of moles of propane $=\frac{480}{44}=10.9$ from balanced equation, one mol of propane makes three mol of CO_{2} number of mol of $\mathrm{CO}_{2}=3 \times 10.9=32.7 \mathrm{~mol}$ $\begin{aligned} & 24 \times 32.7=784.8 \mathrm{dm}^{3} \\ & =785 \mathrm{dm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 2 \\ \mathrm{AO} 2 \times 3 \\ 4.3 .5 \end{gathered}$
06.1	8.8 g		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.1 } \\ \text { 4.3.3.1 } \end{gathered}$
06.2	8.2 g		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.3.1 } \end{gathered}$
06.3	100\%		1	$\begin{gathered} \text { AO2 } \\ 4.3 .3 .2 \end{gathered}$
07	Level 3: Appropriate equipment named and a detailed description of the various repeats required is provided.		5-6	AO14.4.2.5
	Level 2: Method provided. Some attempt at demonstrating need for repeats.		3-4	
	Level 1: A basic titration method provided. No mention of repeats.		1-2	

AQA GCSE Chemistry

Practice answers

| Question | Answers | Extra
 information | Mark
 Specification
 reference |
| :--- | :--- | :--- | :--- | :--- |
| | No relevant content. | | |
| | Indicative content
 - use a pipette to measure out a known volume of sodium
 hydroxide.
 - put the sodium hydroxide into a conical flask.
 - add a few drops of a suitable indicator to the conical flask
 - place the conical flask on a white tile.
 - fill a burette with the hydrochloric acid.
 - add about one m^{3} of acid to the conical flask and mix by
 swirling the flask.
 - repeat until the indicator changes colour.
 - record the volume of acid used as the rough titre.
 - repeat the process, but as the end point is approached, add
 the acid drop wise to obtain a precise measurement.
 - repeat until at least two concordant results are achieved. | | |

AQA GCSE Chemistry

Practice answers

Question	Answers	Extra information	Mark	\qquad
08.1	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{CH}_{4}=12+(4 \times 1)=16 \\ & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{O}=(1 \times 2)+16=18 \\ & \text { atom economy: } \\ & \frac{\text { relative formula massof desiredproductfrom equation }}{\text { sumof relative formula massesof all reactantsfrom equations }} \\ & \times 100 \% \\ & \frac{6}{(16+18)} \times 100 \\ & =17.6 \% \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 1 \\ \mathrm{AO} 2 \times 2 \\ 4.3 .3 .2 \end{gathered}$
08.2	use electricity generated from renewable resources	allow suitable alternative answers	1	AO3
08.3	Level 3: The comparisons are detailed and accurate. The writing is clear, coherent and logical and comparisons are clearly made.		5-6	$\begin{gathered} \text { AO3 } \\ \text { 4.3.3.2 } \end{gathered}$
	Level 2: The comparisons are generally correct, although may lack detail. The writing is mainly clear, although the structure may lack logic and comparisons are not always clear.		3-4	
	Level 1: Some comparisons are correct. The writing lacks clarity, coherence and logic, and the comparisons are not clearly expressed.		1-2	
	No relevant content		0	

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
	Indicative content - 1 occurs at a higher temperature than 2 , so 2 is better for sustainable development in this respect - if the raw material for 1 is obtained from fossil fuels, 2 is better for sustainable development in terms of resources used - if the material for 1 is obtained from sewage, both processes have a similar impact on the environment in terms of resources used - 2 produces carbon monoxide, which is poisonous, so 1 is better for sustainable development in terms of pollutants made - 1 has a higher atom economy than 2 , so 1 is better for sustainable development in this respect			
09.1	to allow oxygen to enter the crucible		1	AO3
09.2	$\begin{aligned} & \text { percentage yield: } \\ & \frac{\text { massof productactuallymade }}{\text { maximumtheoreticamassof product }} \times 100 \% \\ & \frac{1.80}{2.00} \times 100 \% \\ & =90 \% \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 1 \\ \mathrm{AO} 2 \times 2 \\ 4.3 .3 .1 \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	AO / $\begin{gathered}\text { Specification } \\ \text { reference }\end{gathered}$
09.3	one from: - some magnesium oxide escaped out of the crucible - not all the magnesium reacted - some of the magnesium oxide reacted with nitrogen from the air	allow other suitable answers	1	$\begin{gathered} \text { AO3 } \\ 4.3 .3 .1 \end{gathered}$
10.1	13.55		1	$\begin{gathered} \text { AO3 } \\ \text { 4.4.2.5 } \end{gathered}$
10.2	13.00		1	$\begin{gathered} \text { AO2 } \\ \text { 4.4.2.5 } \end{gathered}$
10.3	$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1 mark for reactants, 1 mark for products, 1 mark for state symbols	3	$\begin{gathered} \text { AO2 } \\ \text { 4.4.2.5 } \end{gathered}$
10.4	$\begin{aligned} & \text { converting units, } 25 \mathrm{~cm}^{3}=0.025 \mathrm{dm}^{3} \text { and } 13 \mathrm{~cm}^{3}=0.013 \mathrm{dm}^{3} \\ & \text { moles of } \mathrm{NaOH}=0.1 \times 0.025=2.5 \times 10^{-3} \\ & \text { concentration of } \mathrm{HNO}_{3}=\frac{2.5 \times 10^{-8}}{0.013} \\ & =0.19 \mathrm{~mol} / \mathrm{dm}^{3} \end{aligned}$	accept errors carried forward for ratios from question 10.3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { AO2 } \\ 4.4 .2 .5 \end{gathered}$
11.1	F		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2.1 } \\ \text { 4.1.2.5 } \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
11.2	two from - A - B - C - D	two correct letters required for the mark	1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2.3 } \end{gathered}$
11.3	Level 3: The description is detailed and accurate. The writing is clear, coherent and logical.		5-6	
	Level 2: The description is correct, although lacks detail. The writing is mainly clear, although the structure may lack logic.		3-4	4.1.2.2
	Level 1: Some aspects of the description are correct. The writing lacks clarity, coherence and logic.		1-2	
	No relevant content		0	

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
	Indicative content - before discovering sub-atomic particles, scientists attempted to classify the elements by arranging them in order of their atomic weights - early periodic tables were incomplete, and some elements were placed in inappropriate groups - Mendeleev overcame the problems by leaving gaps for elements that he thought had not been discovered - Mendeleev also changed the order of elements in some places based on atomic weights - elements predicted by Mendeleev were discovered and filled the gaps - knowledge of isotopes made it possible to explain why the order based on atomic weights was not always correct			
12.1	A		1	$\begin{gathered} \text { AO3 } \\ \text { 4.2.1.4 } \end{gathered}$
12.2	one dot and one cross in each of the four intersections		2	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.4 } \end{gathered}$
12.3	B ionic bonding, no free electrons only able to conduct electricity when molten because ions can move		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
12.4	metallic giant structure of atoms/ions arranged in regular pattern electrons in the outer shell of metal atoms are delocalised and free to move throughout structure giving rise to strong metallic bonds		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.2 .1 .5 \end{gathered}$
13.1	$55.6 \times 5=278 \mathrm{~mol}$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.5 } \end{gathered}$
13.2	$\begin{aligned} & M_{r}=(6 \times 12)+(12 \times 1)+(6 \times 16)=180 \mathrm{~g} \\ & \text { concentration }=180 \times 300 \\ & =59400 \mathrm{~g} / \mathrm{dm}^{3} \\ & =59.4 \mathrm{~kg} / \mathrm{dm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 1 \times 2 \\ \mathrm{AO} \times 2 \\ 4.3 .2 .1 \\ 4.3 .2 .5 \end{gathered}$
13.3	$\begin{aligned} & 59.4 \times \frac{50}{1000} \\ & =2.97 \mathrm{~kg} \end{aligned}$	award two marks for correct answer without working allow 2970 g	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .5 \end{gathered}$
14.1	heat the solution until the water evaporates leaving potassium chloride crystals		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1.2 } \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	AO / Specification reference
14.2	whole square filled with same-sized circle circles arranged in regular pattern all circles touching	potassium chloride has different properties as a compound to potassium and chlorine elements	allow named properties of K and Cl e.g., colour, electrical conductivities	1

