AQA GCSE Chemistry

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	$12+(4 \times 1)=16$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.1.2 } \end{gathered}$
01.2	the reactant that is completely used up when the other reactant is present in excess		1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.2.1 } \end{gathered}$
01.3	$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$		2	$\begin{gathered} \text { AO2 } \\ \text { 4.3.1.1 } \end{gathered}$
01.4	oxygen		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.4 } \end{gathered}$
01.5	0.25		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.4 } \end{gathered}$
02.1	$\begin{aligned} & 6.02 \times 10^{23} \times 6 \\ & =3.61 \times 10^{24} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \\ \text { 4.3.2.1 } \end{gathered}$
02.2	164		1	$\begin{gathered} \mathrm{AOQ} \\ \text { 4.3.1.2 } \end{gathered}$
02.3	gaseous products leave the test tube as a gas	allow named gas (oxygen or nitrogen dioxide).	1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.3 } \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	AO / Specification reference
02.4	$\begin{aligned} & \text { CaO: }(40+16)=56 \\ & \frac{22.4}{56} \\ & =0.4 \mathrm{~mol} \\ & 0.4 \times 164 \\ & =65.6 \mathrm{~g} 6.02 \times 10^{23} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	A01×1 AO2x4 4.3.2.2
03.1	$\begin{aligned} & \text { mass of one mole of water }=\mathrm{RMM} \text { of } \mathrm{H}_{2} \mathrm{O}=16+(2 \times 1)=18 \\ & \text { answer states for water, } 1 \mathrm{~g}=1 \mathrm{~cm}^{3} \text {, so } 1 \text { mole }=18 \mathrm{~g}=18 \mathrm{~cm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.1 } \end{gathered}$
03.2	$\begin{aligned} & \frac{18}{6.02 \times 10^{23}} \\ & =2.99 \times 10^{-23} \mathrm{~g} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .2 .1 \end{gathered}$
03.3	answer assumes that all particles in the $18 \mathrm{~cm}^{3}$ is taken up by water particles but water is a liquid, so has space between the particles		1 1	$\begin{gathered} \text { AO3 } \\ \text { 4.3.2.1 } \end{gathered}$
04.1	there are three atoms of oxygen for every one atom of sulfur		1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.1.1 } \end{gathered}$
04.2	$32+(2 \times 16)=64$	accept correct answer without working shown	1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.2 } \end{gathered}$
04.3	$1.68-1.28=0.4 \mathrm{~g}$	accept correct answer without working shown	1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.1.1 } \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
05.1	the number of atoms, molecules or ions in a mole of a given substance	accept 'particles' in place of 'atoms', 'molecules' or 'ions' accept mention of just one or two of atoms, molecules or ions.	1	$\begin{gathered} \text { AO1 } \\ \text { 4.3.2.1 } \end{gathered}$
05.2	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of water }=(2 \times 1)+16=18 \\ & \text { number of moles of water }=\frac{23}{18}=12.89 \mathrm{~mol} \\ & \begin{aligned} \text { number of molecules } & =12.89 \times 6.02 \times 10^{23} \\ & =7.76 \times 10^{24} \end{aligned} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .1 \end{gathered}$
05.3	$\begin{aligned} & \frac{464}{232}=2 \\ & 2 \times 7.76 \times 10^{24}=1.55 \times 10^{25} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .1 \end{gathered}$
06.1	one from - wear eye protection - work in a fume cupboard	accept any other reasonable answer.	1	$\begin{gathered} \text { AO3 } \\ \text { WS2.4 } \end{gathered}$
06.2	$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$	one mark for balancing one mark for state symbols	2	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .1 .1 \\ 4.2 .2 .2 \end{gathered}$
06.3	Level 3: The description is detailed and accurate. The writing is clear, coherent and logical. Level 2: The description is correct, although lacks detail. The writing is mainly clear, although the structure may lack logic.		$5-6$ $3-4$	$\begin{gathered} \text { AO1 } \\ 4.2 .1 .2 \\ 4.2 .1 .3 \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	$\begin{gathered} \text { AO / } \\ \text { Specification } \\ \text { reference } \end{gathered}$
	Level 1: Some aspects of the description are correct. The writing lacks clarity, coherence and logic.		1-2	
	No relevant content.		0	
	Indicative content - sodium atoms each lose one electron to make Na^{+}ions. - chlorine atoms each gain one electron to make Cl^{-}ions. - the oppositely charged ions are held together - in a lattice - by strong electrostatic forces of attraction - that act in all directions.			
07.1	$\frac{52+49+48+56+55}{5}=52$		1	$\begin{gathered} \text { AO2 } \\ \mathrm{MS} 2 \mathrm{~b} \end{gathered}$
07.2	$56-48=8$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.3.1.4 } \end{gathered}$
07.3	$\begin{aligned} & \text { uncertainty }=\frac{\text { range }}{2}=\frac{8}{2}=4 \\ & \text { mean } \pm 4 \end{aligned}$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.1.3.4 } \end{gathered}$
07.4	$\begin{aligned} & 7.3 \times \frac{25}{1000} \\ & =0.1825 \\ & =0.18 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.5 } \end{gathered}$

AQA GCSE Chemistry

Practice answers
C6

Question	Answers	Extra information	Mark	AO / Specification reference
08.1	$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		1	$\begin{gathered} \text { AO2 } \\ \text { 4.2.2.2 } \end{gathered}$
08.2	$\begin{aligned} & \frac{14}{700} \times 1000 \\ & =20 \mathrm{~g} / \mathrm{dm}^{3} \end{aligned}$	allow $0.02 \mathrm{~g} / \mathrm{cm}^{3}$ if units are specified.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .5 \end{gathered}$
08.3	$\begin{aligned} & 22 \times \frac{30}{1000} \\ & =0.66 \mathrm{~g} \end{aligned}$		1	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .5 \end{gathered}$
08.4	$\begin{aligned} & \text { moles } \mathrm{HNO}_{3}=\frac{0.66}{63} \\ & =0.01 \\ & 20 \times \frac{35}{1000}=0.7 \mathrm{~g} \\ & \text { moles } \mathrm{KOH}=\frac{0.7}{56} \\ & =0.0125 \\ & \text { since moles } \mathrm{HNO}_{3}<\text { moles } \mathrm{KOH}, \text { limiting reagent }=\mathrm{HNO}_{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.3.2.5 } \end{gathered}$

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	$\begin{aligned} & \text { AO / } \\ & \text { Specification } \\ & \text { reference } \end{aligned}$
09.1	first N atom should have 2 shells with 2 crosses in first shell and 5 crosses in second shell, second N atom should be the same but with dots. the N atoms should be sharing 3 dot and 3 cross electrons in an alternating pattern.		2	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.1.4 } \end{gathered}$
09.2	gas would build up in the tube, as it has nowhere to escape to this may result in the bung being forced out of the test tube		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { WS2.3 } \\ \text { WS2.4 } \end{gathered}$
09.3	$\begin{aligned} & \text { number of moles of } \mathrm{Mg}=\frac{2.16}{24}=0.09 \\ & \text { number of moles of } \mathrm{N}_{2}=\frac{0.84}{(2 \times 14)}=0.03 \\ & \text { number of moles of } \mathrm{Mg}_{3} \mathrm{~N}_{2}=\frac{3.00}{(3 \times 24)+(2 \times 14)}=0.03 \\ & 0.09 \mathrm{Mg}+0.03 \mathrm{~N}_{2} \rightarrow 0.03 \mathrm{Mg}_{3} \mathrm{~N}_{2} \\ & 3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \times 3 \\ & \mathrm{AO} 3 \times 2 \\ & 4.3 .2 .3 \end{aligned}$
10.1	$\begin{aligned} & 1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \text {, so } \frac{1000 \mathrm{~cm}^{3}}{5 \mathrm{~cm}^{3}}=200 \\ & 500 \mathrm{mg} \times 5=2500 \mathrm{mg} \text { in } 1 \mathrm{dm}^{3} \\ & 0.5 \mathrm{~g} / \mathrm{dm}^{3} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

AQA GCSE Chemistry

Question	Answers	Extra information	Mark	\qquad
10.2	$(8 \times 12)+(9 \times 1)+14+(2 \times 16)=151 \mathrm{~g}$		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.2 } \end{gathered}$
10.3	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of ibuprofen }=(13 \times 12)+(18 \times 1)+(2 \times 16)=206 \\ & \text { number of moles in } 5.0 \mathrm{~cm}^{3} \text { of solution }=\frac{0.1}{206}=0.000485 \\ & \begin{aligned} \text { number of moles in } 1000 \mathrm{~cm}^{3} \text { of solution } & =0.000485 \times 200 \\ & =0.0971 \text { moles } \end{aligned} \end{aligned}$	or $9.71 \times 10^{-2} \mathrm{~mol}$ in standard form final mark awarded for giving answer to 3 significant figures	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 4.3 .2 .1 \\ 4.3 .2 .5 \\ \text { MS2a } \end{gathered}$
11.1	$(4 \times 12)+(2 \times 1)+56+(4 \times 16)=170$		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.1.2 } \end{gathered}$
11.2	$\begin{aligned} & \mathrm{M}_{\mathrm{r}}=56+32+(4 \times 16)=152 \\ & \text { number of moles }=\frac{0.1}{206} \\ & =4.3 \times 10^{-4} \text { moles } \end{aligned}$	one mark awarded for giving answer to two significant figures; one mark for correctly expressing answer in standard form	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .2 .1 \\ \mathrm{MS} 1 \mathrm{~b} \end{gathered}$
11.3	$\begin{aligned} & \mathrm{M}_{\mathrm{r}}=(12 \times 12)+(24 \times 1)+56+(14 \times 16)=448 \\ & \text { number of moles of iron gluconate }=\frac{0.3}{448}=0.000670 \\ & \text { number of moles of iron }=0.000670 \\ & \text { mass of iron }=0.000670 \times 56=0.0375 \mathrm{~g} \end{aligned}$	or 37.5 mg if correct units are given	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \times 2 \\ & \mathrm{AO} 3 \times 2 \\ & 4.3 .2 .1 \\ & \mathrm{MS} 2 \mathrm{a} \end{aligned}$

AQA GCSE Chemistry

Practice answers
C6

Question	Answers	Extra information	Mark	\qquad
12.1	$\begin{aligned} & M_{r} \text { of iron oxide }=(56 \times 2)+(3 \times 16)=160 \\ & 16 \mathrm{~g}=\frac{16}{160}=0.10 \mathrm{~mol} \end{aligned}$ 0.10 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with 0.15 moles of C 12×0.15 $=1.8 \mathrm{~g}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} \\ \text { 4.3.2.2 } \end{gathered}$
12.2	number of moles of $\mathrm{CO}_{2}=$ number of moles of $\mathrm{C}=0.15$ M_{r} of $\mathrm{CO}_{2}=12+(2 \times 16)=44 \mathrm{~g}$ mass of $\mathrm{CO}_{2}=0.15 \times 44 \mathrm{~g}$ $=6.6 \mathrm{~g}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .2 .2 \end{gathered}$
12.3	$\begin{aligned} & 3.7 \text { tonnes }=3700 \mathrm{~kg} \\ & \frac{3700}{160} \\ & =23.125 \text { moles } \\ & 23.125 \times 2=46.25 \text { moles of } \mathrm{Fe} \\ & 46.25 \times 56 \\ & =2590 \mathrm{~kg} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO} \\ \text { 4.3.2.2 } \end{gathered}$
12.4	$\begin{aligned} & \frac{2590}{3700} \times 100 \\ & =70 \% \end{aligned}$	allow $56 \times \frac{2}{160} \times 100$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO2

AQA GCSE Chemistry

Practice answers

Question	Answers	Extra information	Mark	\qquad
13.1	wear eye protection work in a fume cupboard		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { WS2. } 4 \end{gathered}$
13.2	fill the gas jar with chlorine gas first so that the chlorine does not escape before the sodium is added to it		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { WS2. } 4 \end{gathered}$
13.3	Na ion should have 2 shells with 2 crosses in the first shell, 8 crosses in second shell. Should be in square brackets with a superscript ' + ' to the right of the brackets. Cl ion should have 3 shells with 2 dots in the first shell, 8 dots in the second shell and 7 dots and 1 cross in square brackets. Should be in square brackets with a superscript ' + ' to the right of the brackets.		2	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.2 } \end{gathered}$
	three from: - ionic bonding - sodium atom transfers 1 electron to chlorine atom - forming $1+$ sodium ion and -1 chlorine ion - electrostatic attraction between oppositely charged ions	one mark for each correct point	3	$\begin{gathered} \text { AO1 } \\ \text { 4.2.1.2 } \end{gathered}$

AQA GCSE Chemistry

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.5	sodium conducts electricity because it contains delocalised electrons that can move chlorine does not conduct electricity because it does not contain charged particles that can move sodium chloride conducts electricity when in solution or molten, but not when solid because ions are free to move		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 4.2 .1 .3 \\ 4.2 .1 .4 \\ 4.2 .1 .5 \end{gathered}$
13.6	at the start, orange-brown liquid instead of green gas during/reaction would be less vigorous		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2.6 } \end{gathered}$
14.1	P atom should have 3 shells, first shell should have 2 crosses, second shell should have 8 crosses and 3 shell should have 5 crosses		1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1.7 } \end{gathered}$
14.2	five		1	$\begin{gathered} \text { AO3 } \\ \text { 4.1.2.1 } \end{gathered}$
14.3	Level 3: The properties and locations are correctly given. The comparisons are clear, coherent and logically expressed.		5-6	$\begin{gathered} \text { AO1 } \\ \text { 4.1.1.5 } \\ \text { 4.1.1.4 } \end{gathered}$
	Level 2: The properties and locations are mainly correct. The comparisons are mainly clear, but there is a lack of logic in the answer.		3-4	
	Level 1: Some of properties and/or locations are correct. The writing lacks clarity, coherence and logic, and only one or two comparisons are made.		1-2	

AQA GCSE Chemistry

Question	Answers	Extra information	Mark $/$ Specification reference	
	No relevant content.		0	
	Indicative content - protons have a charge of +1 and a relative mass of 1 - neutrons have no charge and a relative mass of 1 - electrons have a charge of -1 and a very small relative mass - protons and neutrons are found in the nucleus of an atom - electrons are found outside the nucleus - electrons are in orbits/shells/levels			

