Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	12 + (4 × 1) = 16		1	AO2
				4.3.1.2
01.2	the reactant that is completely used up when the other		1	AO1
	reactant is present in excess			4.3.2.1
01.3	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$		2	AO2
				4.3.1.1
01.4	oxygen		1	AO2
				4.3.2.4
01.5	0.25		1	AO2
				4.3.2.4
02.1	6.02x10 ²³ x 6		1	A01
	$= 3.61 \times 10^{24}$		1	4.3.2.1
02.2	164		1	AO2
				4.3.1.2
02.3	gaseous products leave the test tube as a gas	allow named gas (oxygen or nitrogen dioxide).	1	AO2
				4.3.1.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
02.4	CaO: $(40 + 16) = 56$ $\frac{22.4}{56}$ = 0.4 mol 0.4 x 164 = 65.6g 6.02 x 10 ²³		1 1 1 1 1	AO1x1 AO2x4 4.3.2.2
03.1	mass of one mole of water = RMM of $H_2O = 16 + (2 \times 1) = 18$ answer states for water, 1 g = 1 cm ³ , so 1 mole = 18 g = 18 cm ³		1 1	AO2 4.3.2.1
03.2	$\frac{18}{6.02 \times 10^{23}}$ = 2.99 \times 10^{-23} g		1 1	AO2 4.3.2.1
03.3	answer assumes that all particles in the 18 cm ³ is taken up by water particles but water is a liquid, so has space between the particles		1	AO3 4.3.2.1
04.1	there are three atoms of oxygen for every one atom of sulfur		1	AO2 4.1.1.1
04.2	32 + (2 x 16) = 64	accept correct answer without working shown	1	AO2 4.3.1.2
04.3	1.68 - 1.28 = 0.4 g	accept correct answer without working shown	1	AO1 4.3.1.1

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.1	the number of atoms, molecules or ions in a mole of a given substance	accept 'particles' in place of 'atoms', 'molecules' or 'ions' accept mention of just one or two of atoms, molecules or ions.	1	AO1 4.3.2.1
05.2	M _r of water = (2 x 1) + 16 = 18 number of moles of water = $\frac{23}{18}$ = 12.89 mol number of molecules = 12.89 x 6.02x10 ²³ = 7.76x10 ²⁴		1 1 1 1	AO2 4.3.2.1
05.3	$\frac{464}{232} = 2$ 2 x 7.76x10 ²⁴ = 1.55x10 ²⁵		1 1	AO2 4.3.2.1
06.1	one from wear eye protection work in a fume cupboard 	accept any other reasonable answer.	1	AO3 WS2.4
06.2	$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$	one mark for balancing one mark for state symbols	2	AO2 4.3.1.1 4.2.2.2
06.3	Level 3: The description is detailed and accurate. The writing is clear, coherent and logical.		5-6	A01
	Level 2: The description is correct, although lacks detail. The writing is mainly clear, although the structure may lack logic.		3-4	4.2.1.2 4.2.1.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specificatior reference
	Level 1: Some aspects of the description are correct. The writing lacks clarity, coherence and logic.		1-2	
	No relevant content.		0	
	Indicative content			
	 sodium atoms each lose one electron to make Na⁺ ions. chlorine atoms each gain one electron to make Cl⁻ ions. the oppositely charged ions are held together in a lattice by strong electrostatic forces of attraction that act in all directions. 			
07.1	$\frac{52+49+48+56+55}{5}=52$		1	AO2 MS2b
07.2	56 - 48 = 8		1	AO2 4.3.1.4
07.3	uncertainty = $\frac{\text{range}}{2} = \frac{8}{2} = 4$ mean ± 4		1	AO2 4.1.3.4
07.4	$7.3 \times \frac{25}{1000}$		1 1	AO2 4.3.2.5
	= 0.1825 = 0.18		1	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
08.1	$HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(I)$		1	AO2
				4.2.2.2
08.2	$\frac{14}{700}$ x 1000	allow 0.02 g/cm ³ if units are specified.	1	AO2
	$\frac{1}{700}$ x 1000 = 20 g/dm ³		1	4.3.2.5
08.3			1	AO2
	$22 \times \frac{30}{1000}$		1	4.3.2.5
	= 0.66 g			
08.4	moles HNO ₃ = $\frac{0.66}{63}$		1	AO2
	63		1	4.3.2.5
	= 0.01		1	
	$20 \times \frac{35}{1000} = 0.7 \text{ g}$		1	
			1	
	moles KOH = $\frac{0.7}{56}$		1	
	= 0.0125			
	since moles $HNO_3 < moles KOH$, limiting reagent = HNO_3			

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
09.1	first N atom should have 2 shells with 2 crosses in first shell and 5 crosses in second shell, second N atom should be the same but with dots. the N atoms should be sharing 3 dot and 3 cross electrons in an alternating pattern.		2	AO2 4.2.1.4
09.2	gas would build up in the tube, as it has nowhere to escape to this may result in the bung being forced out of the test tube		1 1	AO3 WS2.3 WS2.4
09.3	number of moles of Mg = $\frac{2.16}{24}$ = 0.09 number of moles of N ₂ = $\frac{0.84}{(2 \times 14)}$ = 0.03 number of moles of Mg ₃ N ₂ = $\frac{3.00}{(3 \times 24) + (2 \times 14)}$ = 0.03 0.09 Mg + 0.03 N ₂ \rightarrow 0.03 Mg ₃ N ₂ 3 Mg + N ₂ \rightarrow Mg ₃ N ₂		1 1 1 1	AO2×3 AO3×2 4.3.2.3
10.1	$1 \text{ dm}^3 = 1000 \text{ cm}^3$, so $\frac{1000 \text{ cm}^3}{5 \text{ cm}^3} = 200$ 500 mg x 5 = 2500 mg in 1 dm ³ 0.5g/dm ³		1 1 1	AO2 WS4.3 WS4.4 WS4.5 4.3.2.5

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
10.2	(8 x 12) + (9 x 1) + 14 + (2 x 16) = 151 g		1	AO2
				4.3.1.2
10.3	M _r of ibuprofen = (13 x 12) + (18 x 1) + (2 x 16) = 206		1	AO2
	number of moles in 5.0 cm ³ of solution = $\frac{0.1}{206}$ = 0.000 485		1	4.3.2.1
	$\frac{1}{206} = 0.000483$		1	4.3.2.5
	number of moles in 1000 cm ³ of solution = 0.000 485 x 200 = 0.0971 moles	or 9.71x10 ⁻² mol in standard form final mark awarded for giving answer to 3 significant figures	1	MS2a
11.1	(4 x 12) + (2 x 1) + 56 + (4 x 16) = 170		1	AO2
				4.3.1.2
11.2	M _r = 56 + 32 + (4 x 16) = 152		1	AO2
	number of malor $=$ 0.1		1	4.3.2.1
	number of moles = $\frac{0.1}{206}$ = 4.3 x10 ⁻⁴ moles	one mark awarded for giving answer to two significant figures; one mark for correctly expressing answer in standard form	2	MS1b
11.3	$M_r = (12 \times 12) + (24 \times 1) + 56 + (14 \times 16) = 448$		1	AO2×2
	number of moles of iron gluconate = $\frac{0.3}{448}$ = 0.000 670		1	AO3×2
	$\frac{1}{448} = 0.000670$		1	4.3.2.1
	number of moles of iron = 0.000 670 mass of iron = 0.000 670 x 56 = 0.0375 g	or 37.5 mg if correct units are given	1	MS2a

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
12.1	M_r of iron oxide = (56 x 2) + (3 x 16) = 160		1	AO2
	$16 \text{ g} = \frac{16}{160} = 0.10 \text{ mol}$		1 1	4.3.2.2
	0.10 moles of Fe ₂ O ₃ reacts with 0.15 moles of C		1	
	12 x 0.15		1	
	= 1.8 g			
12.2	number of moles of CO_2 = number of moles of C = 0.15		1	AO2
	M_r of $CO_2 = 12 + (2 \times 16) = 44 \text{ g}$		1	4.3.2.2
	mass of $CO_2 = 0.15 \times 44 \text{ g}$		1	
	= 6.6 g		1	
12.3	3.7 tonnes = 3700 kg		1	AO2
	3700		1	4.3.2.2
	160		1	
	= 23.125 moles		1	
	23.125 x 2 = 46.25 moles of Fe		1	
	46.25 x 56		1	
	= 2590 kg			
12.4	$\frac{2590}{2700}$ x 100	allow 56 x $\frac{2}{160}$ x 100	1	AO2
	3700 × 100	160	1	
	= 70%			

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.1	wear eye protection		1	AO1
	work in a fume cupboard		1	WS2.4
13.2	fill the gas jar with chlorine gas first		1	AO3
	so that the chlorine does not escape before the sodium is added to it		1	WS2.4
13.3	Na ion should have 2 shells with 2 crosses in the first shell, 8 crosses in second shell. Should be in square brackets with a superscript '+' to the right of the brackets. Cl ion should have 3 shells with 2 dots in the first shell, 8 dots in the second shell and 7 dots and 1 cross in square brackets. Should be in square brackets with a superscript '+' to the right of the brackets.		2	AO1 4.2.1.2
	 three from: ionic bonding sodium atom transfers 1 electron to chlorine atom forming 1+ sodium ion and -1 chlorine ion electrostatic attraction between oppositely charged ions 	one mark for each correct point	3	AO1 4.2.1.2

C6

AQA GCSE Chemistry

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.5	sodium conducts electricity		1	A01
	because it contains delocalised electrons that can move		1	4.2.1.3
	chlorine does not conduct electricity		1	4.2.1.4
	because it does not contain charged particles that can move		1	4.2.1.5
	sodium chloride conducts electricity when in solution or molten, but not when solid		1	
	because ions are free to move		1	
13.6	at the start, orange-brown liquid instead of green gas		1	AO1
	during/reaction would be less vigorous			4.1.2.6
14.1	P atom should have 3 shells, first shell should have 2 crosses,		1	AO1
	second shell should have 8 crosses and 3 shell should have 5 crosses			4.1.1.7
14.2	five		1	AO3
				4.1.2.1
14.3	Level 3: The properties and locations are correctly given. The comparisons are clear, coherent and logically expressed.		5-6	AO1 4.1.1.5
	Level 2: The properties and locations are mainly correct. The comparisons are mainly clear, but there is a lack of logic in the answer.		3-4	4.1.1.5
	Level 1: Some of properties and/or locations are correct. The writing lacks clarity, coherence and logic, and only one or two comparisons are made.		1-2	

Practice answers

Ques	on Answers	Extra information	Mark	AO / Specification reference
	No relevant content.		0	
	 Indicative content protons have a charge of +1 and a relative mass of 1 neutrons have no charge and a relative mass of 1 electrons have a charge of -1 and a very small relative mass protons and neutrons are found in the nucleus of an atom electrons are found outside the nucleus electrons are in orbits/shells/levels 			