Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	high melting point—strong covalent bonds does not conduct electricity—there are no charged particles free to move		1 1	AO1 4.2.2.6
01.2	C		1	AO1 4.2.2.6
01.3	oxygen: small molecule/simple molecular silicon: giant covalent structure		1 1	AO2 4.2.2.6 4.1.1.3
02.1	phosphorous: five dots/crosses in total, three should be inside the overlap between the phosphorous and hydrogen molecules hydrogen: three crosses/dots (one per hydrogen), which should be in the overlap between the phosphorous and hydrogen molecules		2	AO2 4.2.1.4
02.2	intermolecular		1	AO1 4.2.2.4
02.3	gas		1	AO1 4.2.2.1
02.4	as radius of central atom increases, boiling point increases because strength of intermolecular forces increases with increasing size of molecule/because there are more electrons		1 1	AO2 4.2.2.4
03.1	there are no gaps/sticks between the atoms		1	AO1 4.2.1.4

Practice answers

Question	Answers	Extra information	Mark	AO / Specificatior reference
03.2	some of its electrons are free to move		1	A01
				4.2.3.2
03.3	0.24		1	AO2
	$\overline{1.99 \times 10^{23}}$			
	$= 1.206 \times 10^{-24}$		1	
	$= 1.21 \times 10^{-24}$		1	
04	Level 3: A detailed and coherent explanation is given, demonstra	ting a sound knowledge of the differences in	5–6	A01
	properties and the reasons for them.			4.2.3.1
	Level 2: A correct description is given of the properties of each allotrope. Some reasons are given, but are not clearly articulated/not clearly linked to the property.		3–4	4.2.3.2
	Level 1: Some correct points are made about each structure. Comparisons and reasons are not included.		1–2	
	No relevant content		0	
	Indicative content			
	 graphite conducts electricity, but diamond does not 			
	 because graphite includes delocalised electrons, but diamond does not 			
	 graphite is soft, but diamond is hard 			
	• because the layers in the structure of graphite can slide over each other, but there are no such layers in			
	diamond/diamond has lots of strong bonds			
	both have high melting and boiling points			
	 because both include strong covalent bonds between their atom 	oms		
05.1	Z		1	AO2
			1-2 0	4.2.3.2

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	each chlorine should have seven dots/crosses, with one electron shared from each (one pair shared in total)	allow only one mark if both chlorines have dots or crosses	2	AO2 4.2.1.4
05.3	each oxygen should have six dots/crosses, with two electrons shared from each (two pairs shared in total)	allow 1 mark if only one shared pair of electrons (single bond), but a total of 8 electrons around each atom	2	AO2 4.2.1.4
05.4	Y chlorine has a higher melting point because it has more electrons/stronger intermolecular forces		1 1	AO3 4.2.2.4
06.1	low melting point because compound X consists of small molecules does not conduct electricity because compound X does not include charged particles that are free to move	accept soluble in water with correct explanation of hydrogen bonding. ignore the name of the compound/ethanol	1 1 1 1	AO1×2 AO2×2 4.2.2.4
06.2	C ₂ H ₅ OH/C ₂ H ₆ O		1	AO1 4.1.1.4
06.3	there are 6 hydrogen atoms: $6 \times 6.02 \times 10^{23} = 3.61 \times 10^{24}$ atoms		1	AO2
06.4	liquid		1	AO2 4.2.2.1
07.1	Z		1	AO3 4.2.3.3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
07.2	high (tensile) strength		1	AO1
				4.2.2.3
07.3	electronics, because nanotubes conduct electricity	both the use and the reason are required for	1	A01
	reinforcing composite materials, because nanotubes have high tensile strength.	each mark	1	4.2.2.3
08.1	C ₆ H ₁₄		1	AO2
				4.2.1.4
08.2	carbon: four dots/crosses in total, one should be in the overlap	one mark for carbon	2	AO1
	of each hydrogen	one mark for hydrogen		4.2.1.4
	hydrogen: four molecules with one electron each (shown as a cross/dot), each electron should be within the overlap of carbon and hydrogen			
08.3	one carbon with 4 hydrogens surrounding it, which are each		1	A01
	joined to the carbon by one stick			4.2.1.4
08.4	Level 3: A detailed and coherent comparison is given, demonstratiquids and gases.	ting a sound understanding of the properties of	5–6	AO1×4 AO3×2
	Level 2: Correct comparisons are made, showing some understand answer is not clearly articulated.	nding of the properties of liquids and gases. The	3–4	4.2.2.1
	Level 1: Some correct points are made about the properties of li	quids and/or gases.	1–2	
	No relevant content		0	

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
	Indicative content			
	 methane is a gas at room temperature 			
	 but hexane is in the liquid state 			
	 both substances can be poured/both substances have no fixed bottom of their containers 	I shape/both substances take the shape of the		
	 hexane has a greater density than methane (at room temperative) 			
	 because both include strong covalent bonds between their atom 	oms		
08.5	hexane has stronger forces between its particles than methane		1	AO2
	so more energy is required to separate the particles in hexane than in methane		1	4.2.2.1
09.1	Level 3: A detailed and coherent answer is given.		5–6	AO2×3
	Level 2: The explanation is correct, but the answer is not clearly articulated.		3–4	AO3×3 4.2.2.4
	Level 1: Some correct points are made, but the answer is not clearly articulated. No relevant content Indicative content		1–2	
			0	
	• fluoroethene, chloroethene and bromoethane are compared since they only differ by one atom			
	 number of electron energy levels/shells increases from fluorine to chlorine to bromine 			
	 boiling point increases from fluoroethene to chloroethene to bromoethene 			
	 indicating that the strength of intermolecular force also increa bromoethane 	ses from fluoroethene to chloroethene to		
09.2	fluoroethene		1	AO3
				4.2.2.5

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
09.3	this should match figure 5, but only a single bond joins the two carbons this polymer should be enclosed in brackets, with the extra bond from each carbon extending out of the brackets (as in figure 4)		1	AO2 4.2.2.5
09.4	there should be a subscript n after the brackets bromoethene is a gas at room temperature so it has no fixed shape/can be poured/ takes the volume of its container poly(bromoethene) is solid at room temperature (because it is a polymer) so it has a fixed shape/cannot be poured/ has a fixed volume		1 1 1 1	AO2 4.2.2.1
10.1	carbon with four electrons, sharing two electrons with each oxygen each oxygen has six electrons, sharing two electrons with each carbon	allow 1 mark if only one shared pair of electrons (single bond), but a total of 8 electrons around each atom	2	AO2 4.2.1.4
10.2	silicon dioxide, SiO ₂ , has a higher boiling point/carbon dioxide, CO ₂ , has a lower sublimation point boiling silicon dioxide involve breaking strong covalent bonds subliming carbon dioxide involves breaking weak intermolecular forces		1 1 1	AO1 4.2.2.4 4.2.2.6

Practice answers

Question	Answers	Extra information	Mark	AO / Specificatior reference
11.1	bond strengths decrease as number of electron energy levels/shells increase as you go down the group		1	AO3 4.2.2.4
	because the bonding electrons are less attracted to the nucleus		1	
11.2	N_2 – five electrons per outer shell, three electrons shared per nitrogen (three pairs shared in total)		1	AO2 4.2.1.4
	O_2 – six electrons per outer shell, two electrons shared per oxygen (two pairs shared in total)		4	
	H_2 – one electron per outer shell, one electron shared per shell (one pair shared in total)		1	
	Triple bonds are stronger than double bonds and double bonds are stronger than single bonds.		1	
			1	
12.1	mass = $7 \times 1.7 \times 10^{-27}$ kg = 1.19×10^{-26} kg		1	AO2
	volume = $\frac{4}{3} \pi \times (1 \times 10^{-14})^3 = 4.19 \times 10^{-42} \text{ m}^3$		1	
	density = $\frac{mass}{volume}$		1	
	density = $\frac{1.19 \times 10^{-26}}{4.19 \times 10^{-42}}$ = 3×10 ¹⁵ kg/m ³ to 1 significant figure			
12.2	All matter is spread evenly throughout nucleus.		1	AO3

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
12.3	no because the mass of the atom is concentrated in the nucleus/the density of the atom is not the same throughout the atom	accept an explanation that relates to 13.2 if the assumption given in 13.2 was valid.	1 1	AO3
12.4	assumes that there are no forces between the spheres forces between the particles affect the physical properties of the substance OR assumes that spheres are solid most of an atom is empty space with a solid nucleus OR assumes atoms do not contain subatomic particles/atoms do contain electrons, neutrons and protons/atoms do contain subatomic particles		2	AO1 4.2.2.1
13.1	¹⁴ ₇ N		1	AO2 4.1.1.5
13.2	E ¹⁵ ₇ N		1 1	AO2
13.3	D ²⁴ ₁₂ Mg ²⁺		1 1	AO2 4.1.1.5

Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
13.4	Mg or $^{25}_{12}$ Mg		1	AO2
	mass = 25		1	4.1.1.5
	atomic number = 12			
14	Level 3: A detailed and coherent answer is given. All equipment is correctly identified.		5–6	AO1 AO3 4.1.1.2
	Level 2: An explanation is given with two or three pieces of equipment correctly identified.		3–4	
	Level 1: An explanation is given, but it lacks structure. Only some equipment is named.		1–2	
	No relevant content		0	
	Indicative content			
	 filter paper is placed into funnel 			
	 funnel is placed into a conical flask/beaker 			
	 pour reaction mixture into filter paper 			
	 solution will collect in the conical flask/beaker 			
	 magnesium will collect in the filter paper 			
	 wear safety glasses when working with acid 			