

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	propane		1	AO2
				4.7.1.1
01.2	ethanol		1	AO2
				4.7.2.3
01.3	all points plotted properly		1	AO2
	line of best fit		1	AO3
				4.7.2.4
01.4	for each homologous series, boiling point increases with number of carbon atoms for each number of carbon atoms, the boiling point increases from alkane to alcohol		1	AO3
	to carboxylic acid		1	
01.5	as molecular size increases, strength of intermolecular forces increases		1	AO2
	so more energy is needed to overcome the forces		1	4.2.2.4

Question	Answers	Extra information	Mark	AO / Specification reference
02.1	ethene is drawn with 2 C atoms and 4 H atoms. The C atoms are linked together by an '=' and each C atom is joined to 2 H atoms by a '-'		1	AO1 4.7.2.1
	ethanol is drawn with 2 C atoms, 5 H atoms and 1 O atoms. One carbon atoms is joined to 1 C atom and 3 atoms by '-'. The other C atom is joined to 1 C atom, 2 H atoms and 1 atoms by '-'. The O atom is joined to 1 C atom and 1 H atom by '-'		1	4.7.2.3
	butane is drawn with 4 C atoms and 10 H atoms. 2 C atoms are joined to 3 H atoms and 1 C atom by '-'. 2 C atoms are joined to 2 C atoms and 2 H atoms.		1	
	butanol is drawn with 4 C atoms, 10 H atoms and 1 O atom. One C atom is joined to 3 H atoms and 1 C atom by a '-'. Two C atoms are joined to 2 C atoms and 2 H atoms by a '-'. One C atom is joined to 1 C atom, 2 H atoms and 1 O atom by '-'. One O atom is joined to 1 C atom.		1	
02.2	carboxylic acid		1	AO1 4.7.2.4
02.3	butene		1	AO1 4.7.2.1
03.1	bubbles because carbon dioxide gas is made (in the chemical reaction)		1 1	AO1 4.7.2.4
03.2	to speed up the reaction		1	AO1 4.6.1.4
03.3	ethyl ethanoate		1	AO1 4.7.2.4

Question	Answers	Extra information	Mark	AO / Specification reference
03.4	(sweet) smell		1	AO1
				4.7.2.4
04.1	colour change from orange-brown to colourless		1	AO1
				4.7.2.2
04.2	3 C atoms, 6 H atoms and 2 Br atoms are drawn.		1	AO2
	one C atom is joined to 3 H atoms and 1 C atom by			4.7.2.2
	one C atom is joined to 1 C atom, 2 H atoms and 1 Br atom by			
04.3	60 °C		1	AO1
	metal catalyst			4.7.2.2
04.4	3 C atoms and 8 H atoms are drawn.		1	AO2
	2 C atoms are joined to 3 H atoms and 1 C atom by -			4.7.1.1
	1 C atom is joined to 2 C atoms and 2 H atoms by -			4.7.2.2
			1	
	as number of chloring stoms increases all degrapped		Ŧ	
05.1	showing that the hydrogen ion concentration increases		1	AO2
	showing that the degree of ionisation must be greater		1	4.4.2.6
			-	
			1	

Question	Answers	Extra information	Mark	AO / Specification reference
05.2	bubbles formed in both cases		1	AO3
	D bubbles more vigorously/C bubbles less vigorously		1	4.4.2.6
				4.7.2.4
05.3	calcium propanoate		1	AO3
				4.7.2.4
06.1	Level 3: The identities of X, Y and Z are given correctly. The justification draws on all		5-6	AO3
	the available evidence and is detailed, logical and coherent.			4722
	Level 2: The identities of two of X, Y and Z are given correctly. Some points, drawing		3-4	1723
	on the evidence, are made to justify their identities.			4.7.2.5
	Level 1: The identities of one of X, Y and Z are given correctly. Some points are made		1-2	4.7.2.4
	to justify this conclusion, but they are not clearly articulated and the structure of the			
				-
	No relevant content.		0	
	Indicative content			
	 Z bubbles with sodium carbonate, so Z is ethanoic acid 			
	 Z bubbles more quickly with sodium than X, so Z is ethanoic acid 			
	 X reacts with sodium more slowly than Z, so is ethanol 			
	• X burns with a blue flame, so is ethanol			
	• Y does not react with sodium or sodium carbonate, so Y is pentene			
	Y burns with a smoky flame, so is pentene			
06.2	alcohols		1	AO3
				4.7.2.3
1				

Question	Answers	Extra information	Mark	AO / Specification reference
06.3	propanoic acid		1	AO2 4.7.2.4
07.1	the alcohol		1	AO2
07.2	 two from: volume/mass of water distance between the lamp and the container volume/mass/amount of alcohol burnt 	allow other suitable answers award one mark for each correct control variable, to a maximum of two	2	AO2
07.3	as size of alcohol increases, temperature increase of the water increases because more carbon atoms in the alcohol/more bonds are broken therefore, more energy is transferred in the exothermic reaction to the water		1 1 1	AO3 4.5.1.3
07.4	$C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$	one mark for formulae of reactants one mark for formulae of products one mark for balancing	3	AO2 4.7.2.3

Question	Answers	Extra information	Mark	AO / Specification reference
07.5	5 C atoms, 12 H atoms and 1 O atom.		1	AO3
	one C atom is joined to 3 H atoms and 1 C atom.			4.7.2.3
	3 C atoms are joined to 2 C atoms and 2 H atoms.			
	O atom is joined to 1 C atom and 1 H atom			
08.1	veast		1	AO1
				4.7.2.3
08.2	37 °C	allow any value	1	AO1
		between 30 °C and 40		4.7.2.3
00.0	alcoholic drinks			101
08.3	fuel		1	AUI
			T	4.7.2.3
08.4	$M_{\rm r}$ of ethanol = (2 × 12) + (6 × 1) + 16 = 46		1	AO2
	number of moles of ethanol = $\frac{80}{10}$ = 1.74		1	4.3.2.1
	46		1	4.3.2.2
	moles of glucose = $\frac{1.74}{2}$ = 0.87		1	
	M_r of glucose = $(6 \times 12) + (12 \times 1) + (6 \times 16) = 180$		T	
	mass of 0.87 mol of glucose = $0.87 \times 180 = 156.6$ g			
09.1	$M_{\rm r}$ of $C_{10}H_{21}OH = (10 \times 12) + (22 \times 1) + 16$	award two marks if	1	AO2
	= 158	correct answer given with no working	1	4.3.1.2
09.2	x		1	AO2
			_	4.7.2.2

Question	Answers	Extra information	Mark	AO / Specification reference
09.3	C ₁₀ H ₂₂		1	AO2
				4.7.2.2
09.4	ester		1	AO2
				4.7.2.4
10.1	butane		1	AO1
				4.7.1.1
10.2	propene		1	AO1
				4.7.2.2
10.3	C ₈ H ₁₆		1	AO2
				4.7.2.1
10.4	C ₅ H ₁₂		1	AO2
				4.7.1.1
11.1	methanol		1	AO1
				4.7.2.3
11.2	as the number of carbon atoms increases,		1	AO2
	the solubility in water decreases		1	
11.3	the hydrocarbon part of the molecule does not mix with the water		1	AO3
				4.7.2.3

Question	Answers	Extra information	Mark	AO / Specification reference
11.4	C ₅ H ₁₁ OH		1	AO2
	mass of one mole = $(5 \times 12) + (12 \times 1) + 16 = 88$ g		1	4.3.4
	number of moles that dissolves in 100 cm ³ of water = $\frac{26.4}{88}$ = 0.030 mol		1	
	so concentration = $0.030 \times 10 = 0.30 \text{ mol/dm}^3$	one mark for correct answer, one mark for two significant figures	2	
12.1	neutralisation		1	A01
				4.4.2.2
12.2	no		1	AO2
	energy is not created or destroyed in a chemical reaction		1	4.5.1.1
	the test tube got hotter because energy was transferred from the reaction/chemicals/bonds to the surroundings		1	
12.3	energy transferred from the surroundings to the system to break bonds in the reactants		1	AO2
	energy transferred to the surroundings on the formation of the bonds in the products		1	4.5.1.3
	more energy released (on formation of bonds) then transferred (to break bonds).		1	
12.4	one from:	allow other valid	1	A01
	combustion	examples (e.g.,		4.5.1.1
	oxidation	respiration)		
13.1	$M_{\rm r} = 40 + 12 + (3 \times 16)$		2	AO2
	= 100			4.3.2.1

Question	Answers	Extra information	Mark	AO / Specification reference
13.2	40		1	AO1
	100		1	4.3.2.1
	= 0.4			
13.3	CaO		1	AO1
				4.1.1.1
13.4	$M_{\rm r}$ of CaO = 40 + 16 = 56			AO2
	$M_{\rm r}$ of CO ₂ = 12+ 16 x 2 = 44		1	4.3.3.2
	atom economy =		1	
	relativeformulamassof desired product from equation			
	sumofrelative formula masses of all reactants from equation			
	× 100%		1	
	$=\frac{56}{100} \times 100\%$			
	(56 + 44)		1	
	= 56%			
13.5	gas produced		1	AO1
	lost from reaction vessel		1	4.3.1.1