



| Question | Answers                                                                        | Extra information                                                                                                                  | Mark | AO / Specification reference |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|
| 01.1     | top = ethane                                                                   |                                                                                                                                    | 1    | AO1                          |
|          | bottom = butane                                                                |                                                                                                                                    | 1    | 4.7.1.1                      |
| 01.2     | C <sub>22</sub> H <sub>46</sub>                                                |                                                                                                                                    | 1    | AO2                          |
|          |                                                                                |                                                                                                                                    |      | 4.7.1.1                      |
| 01.3     | decane has a lower flammability, higher boiling point, and higher viscosity    |                                                                                                                                    | 1    | AO1<br>4.7.1.3               |
| 02.1     | Points plotted at (5,36) (6,69) (7, 98) (8, 126) (10, 174) (11, 196) (12, 216) | two marks for all eight points correctly plotted one mark for four to seven points correctly plotted one mark for line of best fit | 3    | AO2                          |
| 02.2     | 153                                                                            | allow number<br>between 151 and<br>155                                                                                             | 1    | AO3                          |





| 02.3 | $C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$                                                                                                                                                                  | one mark for correct formula of nonane one mark for formulae of reactants one mark for formulae of products one mark for balancing | 4           | AO2<br>4.1.1.1 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 03.1 | compounds in crude oil with a similar number of carbon atoms                                                                                                                                                    |                                                                                                                                    | 1           | AO1<br>4.7.1.2 |
| 03.2 | vapour moves up the column, cooling as moving up fractions condense when they reach the temperature of their boiling points different fractions collected at different levels                                   |                                                                                                                                    | 1<br>1<br>1 | AO1<br>4.7.1.2 |
| 03.2 | Level 3: The comparisons are detailed and accurate. The writing is clear, coherent and logical and comparisons are clearly made.  Level 2: The comparisons are generally correct, although may lack detail. The |                                                                                                                                    | 5-6<br>3-4  | AO1<br>4.7.1.3 |
|      | writing is mainly clear, although the structure may lack logic and comparisons are not always clear.                                                                                                            |                                                                                                                                    | J-4         |                |
|      | <b>Level 1:</b> Some comparisons are correct. The writing lacks clarity, coherence and logic, and the comparisons are not clearly expressed.                                                                    |                                                                                                                                    | 1-2         |                |
|      | No relevant content                                                                                                                                                                                             |                                                                                                                                    | 0           |                |





|      | Indicative content                                                                                              |   |         |
|------|-----------------------------------------------------------------------------------------------------------------|---|---------|
|      | both burn (completely) to make carbon dioxide and water                                                         |   |         |
|      | <ul> <li>on burning, both release energy/transfer energy to the surroundings</li> </ul>                         |   |         |
|      | diesel boils at higher temperatures than petrol                                                                 |   |         |
|      | diesel is more viscous than petrol                                                                              |   |         |
|      | diesel is less flammable than petrol                                                                            |   |         |
|      | diesel is more likely to have smoker/ more sooty flame                                                          |   |         |
| 04.1 | so that the liquid hydrocarbon forms vapour                                                                     | 1 | AO2     |
|      |                                                                                                                 |   | 4.7.1.4 |
| 04.2 | should not be in the liquid collected                                                                           | 1 | AO3     |
| 04.3 | C <sub>5</sub> H <sub>12</sub>                                                                                  | 1 | AO2     |
|      | boiling point increases with molecule size                                                                      | 1 | 4.7.1.3 |
| 04.4 | orange/brown to colourless                                                                                      | 1 | AO1     |
|      |                                                                                                                 |   | 4.7.1.4 |
| 05.1 | B is C <sub>2</sub> H <sub>4</sub> – bromine test shows it is an alkene                                         | 1 | AO3     |
|      | C is C <sub>17</sub> H <sub>36</sub> – has highest boiling point so must have the biggest molecules             | 1 | 4.7.1.3 |
|      | D is C <sub>2</sub> H <sub>6</sub> – has lowest boiling point of the alkanes so has smallest molecules          | 1 | 4.7.1.4 |
|      | A is C <sub>8</sub> H <sub>18</sub> – intermediate boiling point of alkanes, and so intermediate size molecules | 1 | 4.7.1.4 |
| 05.2 | С                                                                                                               | 1 | AO3     |
|      |                                                                                                                 |   | 4.7.1.3 |





| 05.3 | $C_{20}H_{42} \rightarrow C_8H_{18} + 4C_3H_6$                                                                                                                                                                                           | one mark for formulae of reactants one mark for formulae of products one mark for balancing                                                                                                                     | 3                     | AO2<br>4.7.1.4 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|
| 06.1 | hydrocarbons                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | 1                     | AO1<br>4.7.1.2 |
| 06.2 | fractional distillation crude oil is vaporised and pumped into column temperature decreases as you go up column groups of hydrocarbons of a similar number of carbon atoms condense at their boiling point the fractions are tapped off  |                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1 | AO1<br>4.7.1.2 |
| 06.3 | <ul> <li>one from</li> <li>petroleum gas – fuel</li> <li>petrol – fuel (in engines)</li> <li>kerosene – fuel (in aircraft)</li> <li>heavy fuel oil/diesel oil – fuel (diesel engines)</li> <li>residue/bitumen – making roads</li> </ul> | use must match the fraction given fuel on its own is an acceptable answer for petroleum gas, petrol, kerosene, and heavy fuel oil; however, if a particular machine is named it must match the correct fraction | 1                     | AO1<br>4.7.1.2 |
| 07.1 | crude oil                                                                                                                                                                                                                                |                                                                                                                                                                                                                 | 1                     | AO1<br>4.7.1.1 |





| 07.2 | $(6 \times 12) + (14 \times 1) = 86$                                                                                                                              | 1   | AO2<br>4.3.1.2     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
| 07.3 | <b>Level 3:</b> The pattern is described correctly and the explanation is accurate. The writing is clear and coherent and the reasoning is logical.               | 5-6 | AO1 x 2<br>AO3 x 4 |
|      | <b>Level 2:</b> The pattern is correctly described, and the explanation mainly accurate. The writing is mainly clear and coherent, but the reasoning lacks logic. | 3-4 | A03 X 4            |
|      | <b>Level 1:</b> The pattern is described correctly. The writing lacks clarity and coherence. The reasoning is unclear.                                            | 1-2 |                    |
|      | No relevant content.                                                                                                                                              | 0   |                    |
|      | Indicative content                                                                                                                                                |     |                    |
|      | alkanes consist of small molecules with weak intermolecular forces between the molecules                                                                          |     |                    |
|      | boiling point decreases as intermolecular force strength decreases                                                                                                |     |                    |
|      | <ul> <li>data in the table show that as the number of branches increases, boiling point<br/>decreases</li> </ul>                                                  |     |                    |
|      | intermolecular bond strength decreases as branching increases                                                                                                     |     |                    |
| 08.1 | both require heat                                                                                                                                                 | 1   | AO1                |
|      | in catalytic cracking, the vapour is passed over a hot catalyst                                                                                                   | 1   | 4.7.1.4            |
|      | in steam cracking, the vapour is mixed with steam before heating                                                                                                  | 1   |                    |
| 08.2 | $C_{10}H_{22} \rightarrow C_6H_{14} + 2C_2H_4$                                                                                                                    | 1   | AO2                |
|      |                                                                                                                                                                   |     | 4.1.1.1            |
| 08.3 | to make more smaller alkane molecules for fuels to make alkenes to produce polymers/other chemicals                                                               | 1   | AO1                |
|      | to make alkenes to produce polymers/other elements                                                                                                                | 1   | 4.7.1.4            |





| 09.1 | $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$                                                                                                                                                                                                         | one mark for<br>formulae of<br>reactants<br>one mark for<br>formulae of products<br>one mark for<br>balancing | 3                | AO2<br>4.1.1.1 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 09.2 | per mole of $C_5H_{12}$ complete combustion requires 8 moles of oxygen but incomplete combustion requires $\frac{11}{2}$ = 5.5 moles of oxygen so incomplete combustion occurs when there is not enough oxygen for complete combustion               |                                                                                                               | 1                | AO3<br>4.7.1.3 |
| 09.3 | energy to break bonds in reactants = $(2 \times 348) + (8 \times 412) + (5 \times 496)$<br>= 6472 (kJ)<br>energy to make bonds in products = $(6 \times 743) + (8 \times 463)$<br>= 8162 (kJ)<br>energy change of reaction = 8162 - 6472 = 1690 (kJ) | ignore units                                                                                                  | 1<br>1<br>1<br>1 | AO1<br>4.5.1.3 |
| 10.1 | positive – bubbles of gas/swimming pool smell/green gas formed negative – small drops of silver-coloured metal                                                                                                                                       |                                                                                                               | 1<br>1           | AO2<br>4.4.3.2 |
| 10.2 | $Zn^{2+} + 2e^- \rightarrow Zn$                                                                                                                                                                                                                      | one mark for<br>formulae of<br>reactants<br>one mark for<br>formulae of products<br>one mark for<br>balancing | 3                | AO2<br>4.4.3.5 |





| 10.3 | positive – chlorine<br>negative – hydrogen                                                               |                      | 1   | AO2     |
|------|----------------------------------------------------------------------------------------------------------|----------------------|-----|---------|
|      | negative nydrogen                                                                                        |                      | 1   | 4.4.3.4 |
| 11.1 | reversible                                                                                               | allow description of | 1   | AO1     |
|      |                                                                                                          | reversible reaction  |     | 4.6.2.1 |
| 11.2 | cooling (the mixture of ammonia and hydrogen chloride)                                                   |                      | 1   | AO2     |
|      |                                                                                                          |                      |     | 4.6.2.2 |
| 11.3 | prevents the escape of reactants and products                                                            |                      | 1   | AO1     |
|      |                                                                                                          |                      |     | 4.6.2.3 |
| 12.1 | remains of ancient biomass/plankton that was buried in the mud                                           |                      | 1   | AO1     |
|      |                                                                                                          |                      |     | 4.7.1.1 |
| 12.2 | evaporation                                                                                              |                      | 1   | AO1     |
|      | condensation                                                                                             |                      | 1   | 4.7.1.2 |
| 12.3 | Level 3: A range of products and their uses are described. The writing is clear and                      |                      | 5-6 | AO1     |
|      | coherent.                                                                                                |                      |     | 4.7.1.2 |
|      | <b>Level 2:</b> Some products and/or their uses are described. The writing is mainly clear and coherent. |                      | 3-4 |         |
|      | <b>Level 1:</b> One or two products/uses are described. The writing lacks clarity and coherence.         |                      | 1-2 |         |
|      | No relevant content.                                                                                     |                      | 0   |         |





|      | Indicative content  • fuels, for example diesel, petrol, kerosene, liquefied petroleum gases  • raw materials for solvents  • raw materials for lubricants  • raw materials for polymers  • raw materials for detergents                                                                                                                                                                                                                             |                                 |                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| 13.1 | covalent bonds shared pairs of electrons between neighbouring atoms                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1                          | AO1<br>4.2.1.4 |
| 13.2 | intermolecular                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                               | AO1<br>4.2.2.4 |
| 13.3 | $C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$<br>$M_r$ of heptane = $(7 \times 12) + (1 \times 16) = 100$<br>$85.0$ g of heptane = $\frac{85.0}{100} = 0.850$ mol<br>from the equation, one mole of heptane makes seven moles of carbon dioxide<br>so $0.850$ mol of heptane makes $0.850 \times 7 = 5.95$ mol of $CO_2$<br>$M_r$ of carbon dioxide = $12 + (16 \times 2) = 44$<br>so mass of carbon dioxide = $5.95 \times 44 = 262$ g<br>= $260$ g | 1<br>1<br>1<br>1<br>1<br>1<br>1 | AO2            |