AQA GCSE Chemistry
 Practice answers

Question	Answers	Extra information	Mark	AO / Specification reference
01.1	92 kJ	allow '-92 kJ'	1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.2.2 } \end{gathered}$
01.2	if a system is an equilibrium and a change is made to any of the conditions, the system responds to counteract the change		1	$\begin{gathered} \text { AO1 } \\ 4.6 .2 .4 \end{gathered}$
01.3	it shifts to the right		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.2.7 } \end{gathered}$
02.1	one O atom should have 6 dots and 2 crosses and other should have 6 crosses and 2 dots. the O atoms should be sharing 2 dots and 2 crosses		2	$\begin{gathered} \mathrm{AO2} \\ \text { 4.2.1.4 } \end{gathered}$
02.2	a reaction that transfers energy to the surroundings		1	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.1 } \end{gathered}$
02.3	more SO_{3} is added - shifts to the left pressure is increased - shifts to the right temperature is increased - shifts to the left more O_{2} is added - shifts to the right		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 4.6 .2 .5 \\ 4.6 .2 .6 \\ 4.6 .2 .7 \end{gathered}$
03.1	methanol gas is the product in unsealed container, product would escape (into surroundings) therefore, forward reaction would continue (to produce methanol) or continue to completion		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.6.2.3 } \end{gathered}$
03.2	Level 3: Three conditions identified with matching description of how the change will affect the position of the equilibrium. Full explanation of why change occurs provided.		5-6	$\begin{gathered} \text { AO1 } \\ \text { 4.6.2.4 } \end{gathered}$

AQA GCSE Chemistry
 Practice answers

| Level 2: At least two conditions identified with a matching |
| :--- | :--- | :--- | :--- |
| description of how the change will affect the position of the |
| equilibrium. Attempt at explanations given, with some accurate |
| points given. |\quad| 4.6 | 4.2 .5 |
| :--- | :--- | points given.

Level 1: At least one condition identified, thought description of
how the change will affect position not given, incorrect, or incomplete. No attempt at explanation provided.

No relevant content

0

Indicative content
increasing total pressure:

- shifts the equilibrium to the right/results in a greater relative amount of product
- because there is a smaller number of molecules on this side of the equation

decreasing temperature:

- shifts the equilibrium to the right/results in a greater relative amount of product
- because the reaction is exothermic in the reaction shown increasing the amount/concentration of the reactant:
- shifts equilibrium to the right/results in a greater relative amount of product until equilibrium is established again
- because there is a smaller number of molecules shown in the equation on the left and the concentrations of all substances will change until equilibrium is reached again

\section*{AQA GCSE Chemistry

 \section*{Practice answers

 \section*{Practice answers

 C13}}

03.3	mass of one mole of CO = 12 +16 = 28g 10 g of CO is $\frac{10}{28}=0.3571 \mathrm{~mol}$ from the equation, 0.3571 moles of CO makes 0.3571 moles of methanol mass of one mole of methanol $=12+16+(4 \times 1)=32 \mathrm{~g}$ mass of 0.3571 mol of methanol $=0.3571 \times 32=11.4272$ $=11.4 \mathrm{~g}$ to three significant figures		1 1 1 1 1 1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.3.2.1 } \\ \text { 4.3.2.2 } \end{gathered}$
04.1	reversible	accept 'equilibrium'	1	$\begin{gathered} \text { AO1 } \\ 4.6 .2 .1 \end{gathered}$
04.2	H_{2} and I_{2} react together to make HI at the same rate that HI reacts to form H_{2} and I_{2}		1	$\begin{gathered} \mathrm{AO} 2 \\ 4.6 .2 .3 \end{gathered}$
04.3	when H_{2} and I_{2} react to form HI energy is transferred from the surroundings/the system takes in energy from the surroundings		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 4.5.1.1 } \\ \text { 4.6.2.1 } \end{gathered}$
05.1	reactants and products can escape from the apparatus		1	$\begin{gathered} \text { AO2 } \\ 4.6 .2 .3 \end{gathered}$
05.2	Bunsen burner		1	A01
05.3	steam/water/water vapour		1	$\begin{gathered} \mathrm{AO} 2 \\ 4.6 .2 .2 \end{gathered}$
05.4	attach bung to test tube attach delivery tube to test tube feed delivery tube into beaker in ice water		1 1 1	AO3
06.1	place it in a bigger water bath/ensure that the level of the solution is below the level of the water or stir it		1	AO3

\section*{AQA GCSE Chemistry

 \section*{Practice answers

 \section*{Practice answers

 C13}}

AQA GCSE Chemistry

Practice answers

08.2	they are the same		1	$\begin{gathered} \text { AO1 } \\ \text { 4.6.2.3 } \end{gathered}$
08.3	forward		1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.2.2 } \end{gathered}$
09.1	$\mathrm{ICl}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ICl}_{3}(\mathrm{~s})$ or $\mathrm{ICl}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{I})$	one mark for identifying ICl and Cl_{2} as the reactants one mark for state symbols one mark for reversible arrow	3	$\begin{gathered} \text { AO3 } \\ \text { 4.6.2.1 } \end{gathered}$
09.2	exothermic		1	$\begin{gathered} \mathrm{AO2} \\ 4.6 .2 .2 \end{gathered}$
09.3	ice bath reduces the temperature of the system in exothermic reaction, energy is transferred to the surroundings so increasing the temperature/minimising the change		1 1 1	$\begin{gathered} \mathrm{AO3} \\ 4.6 .2 .6 \end{gathered}$
10.1	ammonium chloride		1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.2.1 } \end{gathered}$
10.2	reaction is reversible therefore, as ammonia and hydrogen chloride gases cool they react to form ammonium chloride		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 4.6.2.1 } \end{gathered}$
10.3	crystals turn blue		1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.2.1 } \end{gathered}$
10.4	test tube would warm up		1	$\begin{gathered} \text { AO3 } \\ \text { 4.6.2.2 } \end{gathered}$

AQA GCSE Chemistry

Practice answers

11.1	three		1	$\begin{gathered} \mathrm{AO} 2 \\ 4.3 .2 .1 \end{gathered}$
11.2	$\begin{aligned} & 14+(3 \times 1) \\ & =17 \end{aligned}$	award two marks for correct answer with no working	1 1	$\begin{gathered} \mathrm{AO} 2 \\ \text { 4.3.1.2 } \end{gathered}$
11.3	$\begin{array}{r} \frac{68}{17} \\ =4 \\ \hline \end{array}$	award two marks for correct answer with no working	1 1	$\begin{gathered} \text { AO2 } \\ 4.3 .2 .1 \end{gathered}$
11.4	$\begin{aligned} & 4 \times 6.02 \times 10^{23} \\ & =2.408 \times 10^{24} \\ & =2.41 \times 10^{24} \end{aligned}$		1 1 1	$\begin{gathered} \mathrm{AO2} \\ 4.3 .2 .1 \end{gathered}$
12.1	two from: - moves around on surface of water - fizzing - lilac/mauve/purple flame - if universal indicator has been added to the water, these is a colour change from green to purple/blue	one for each correct observation	2	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2.5 } \end{gathered}$
12.2	lithium hydroxide hydrogen		1 1	$\begin{gathered} \text { AO1 } \\ \text { 4.1.2.5 } \\ \text { 4.4.1.2 } \end{gathered}$
12.3	no change		1	$\begin{gathered} \text { AO1 } \\ \text { 4.4.1.2 } \end{gathered}$

\section*{AQA GCSE Chemistry

 \section*{Practice answers

 \section*{Practice answers

 C13}}

13.1	use a pipette to transfer the sodium hydroxide because its resolution is higher/it measures more accurately add a few drops of indicator only so it is easier to detect the colour change/to avoid wasting indicator		1 1 1 1	$\begin{gathered} \mathrm{AO3} \\ 4.4 .2 .3 \end{gathered}$
13.2	repeat without indicator so that the crystals are not contaminated with indicator		1 1	$\begin{gathered} \text { AO3 } \\ \text { 4.4.2.3 } \end{gathered}$
13.3	0.025 mol of sodium hydroxide makes 0.025 mol of sodium chloride molar mass of sodium chloride is $23+35.5=58.5$ mass of $0.025 \mathrm{~mol}=0.025 \times 58.5=1.4625$ $=1.5(\mathrm{~g})$ to two significant figures		1 1 1 1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.3.2.1 } \\ \text { 4.3.2.2 } \end{gathered}$
14.1	$\begin{aligned} & 2 \mathrm{SO}_{2} \\ & \mathrm{~g} \\ & \text { two } \end{aligned}$		1 1 1	AO2
14.2	forward reaction		1	$\begin{gathered} \mathrm{AO2} \\ \text { 4.6.2.2 } \end{gathered}$
14.3	more energy transferred to break reactant bonds than is transferred to surroundings on formation of product bonds		1	$\begin{gathered} \text { AO3 } \\ \text { 4.5.1.3 } \end{gathered}$
14.4	decrease yield		1	$\begin{gathered} \mathrm{AO2} \\ 4.6 .2 .6 \end{gathered}$
14.5	high/increase yield		1	$\begin{gathered} \text { AO1 } \\ 4.6 .1 .2 \end{gathered}$

AQA GCSE Chemistry

Practice answers

14.6	provides an alternative reaction pathway with a lower activation energy so more frequent collisions with enough energy to react	1	AO1	
14.7	increase pressure fewer molecules in the products so equilibrium position will shift right to minimise change	1 accept answer that matches with student's balanced equation	1	1
14.8	expensive/dangerous		1	4.6 .2 .7

