

Question	Answers	Extra information	Mark	AO Spec reference
01.1	$R = \frac{V}{I}$ 7.00 to be seen either on the table or by the question	Must be written to 3 s.f.	1	3.5.1.1 3.1.2 AO1
01.2	±0.01A		1	3.1.2 AO1
01.3	Point plotted to within $\frac{1}{2}$ a small square AND suitable line of best fit drawn	Both needed for mark	1	MS 3.2 AO1
01.4	Systematic error Resistance of connecting wires OR Error in measuring length introduced by crocodile clips	Allow any sensible source of systematic error	1 1	3.1.2 AO1
01.5	Large triangle seen or suitable data points from line of best fit Gradient = 12 ± 0.5	MUST NOT be data from table	1 1	MS 3.4 AO2
01.6	Cross-sectional area of wire = π (0.11×10 ⁻³) ² = 3.8×10 ⁻⁸ m ² Use of $R = \frac{\rho L}{A}$ to give gradient = $\frac{\rho}{A}$ $\rho = 12 \times 3.8 \times 10^{-8} = 4.6 \times 10^{-7}$ (Ω m)	Ignore errors in powers of 10 for this mark possible error carried forward from gradient	1 1 1	3.5.1.3 MS 3.1 AO2
01.7	% difference = $\frac{4.9 \times 10^{-7} - 4.6 \times 10^{-7}}{4.9 \times 10^{-7}}$ % difference = 6% (or 7% if you use unrounded numbers) This data is accurate as below 10% difference or not accurate as above 5%	Allow justification for any sensible comment Allow any valid comment	1	3.1.2 AO2
02.1	$I = \frac{\Delta Q}{\Delta t}$ $\Delta t = \frac{\Delta Q}{I} = \frac{15 \text{ C}}{30000 \text{ A}} = 5 \times 10^{-4} \text{ s}$		1	3.5.1.1 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.2	number of electrons = $\frac{\Delta Q}{\text{charge on 1 electron}}$		1	3.5.1.1 AO2
	Number of electrons = $\frac{15 \text{ C}}{1.6 \times 10^{-19} \text{ C}}$ = 9.4×10 ¹⁹		1	
02.3	$W = VQ = 40 \times 10^6 \times 15 \text{ C} = 6.0 \times 10^8 \text{ J}$		1	3.5.1.1 AO1
02.4	Use of $E = mc\Delta\theta$ or $E = mL$ $E = (0.58 \times 830 \times 1800) + (0.58 \times 156000) = 9.6 \times 10^5 \text{ J}$ Yes, as $6 \times 10^8 \text{ J} > 9.6 \times 10^5 \text{ J}$	valid comment consistent with their calculation	1 1 1	3.6.2.1 AO3
03.1	 X is a resistor The resistance is constant so the voltage and current are directly proportional Y is a filament lamp The resistance increases with increasing voltage/current/as temperature increases resistance increases 		1 1 1 1	3.5.1.2 AO1
03.2	$R = \frac{V}{I} \\ R = \frac{5.0}{0.3} = 16.7 \Omega$	Must not draw a tangent here	1 1	3.5.1.1 AO2
03.3	p.d. across Y = 2.5 V (read from graph) p.d. across X = 5.0 V (read from graph) e.m.f. = 7.5 V	Can also solve by determining resistance of each component with that current and calculating <i>V</i> by multiplying resistance by current	1 1	3.5.1.2 3.5.1.4 AO2
03.4	Current in Y = 0.30 A (read from graph) Current in X = 0.20 A (read from graph) Total current = 0.50 A		1	3.5.1.2 3.5.1.4 AO2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.1	Area of 1 strand of cable = $\pi r^2 = \pi (1.665 \times 10^{-3})^2$ For 1 strand $R = \frac{\rho L}{A} = \frac{2.82 \times 10^{-8} \times 1000}{\pi (1.665 \times 10^{-3})^2}$		1	3.5.1.3 3.5.1.4 AO2
	$R = 3.2 \Omega$ Therefore, for cable $\frac{1}{R_{\rm T}} = 27 \times \left(\frac{1}{R}\right)$		1	
	$R_{\rm T} = 0.12\Omega$		1	2511
04.2	$R \text{ of } 1 \text{ m} = \frac{0.122}{1000} = 1.2 \times 10^{-4} \Omega \text{ or use of } P = I^2 R$ $I^2 = \frac{P}{R} = 500 \text{ A}$	Allow e.c.f. from answer to 4.1	1	3.5.1.1 3.5.1.4 AO3
04.3	A superconductor has zero resistivity at or below the critical temperature A high temperature superconductor has a higher critical temperature		1 1	3.5.1.3 AO1
04.4	 Allow any sensible suggestion here for one mark: expense of super cooling cables needs to outweigh gains in energy transmission (owtte) only for high-load cables less energy lost in transmission preserves energy resources/reduces use of fossil fuels 		1	3.5.1.3 AO3
05.1	(As temperature increases) resistance of thermistor decreases p.d. across thermistor decreases or pd across fixed resistor R increases V_{out} increases, (which means it will switch something on when the temperature increases)		1 1 1	3.5.1.3 3.5.1.5 AO2
05.2	This is because the number of charge carriers increases in the thermistor		1	3.5.1.3 AO2
05.3	60°C: 280 Ω 100°C: 190 Ω (allow ±5 Ω)		1 1	3.5.1.3 AO1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.4	Variable resistor needed		1	3.5.1.5
	Range: $\frac{R}{R} = \frac{280}{R} = 350.0$		1	AU2
	$\frac{5}{R} = \frac{190}{R} = 238 \Omega$		1	
	5 4			
06.1	Axes labelled – resistance on y-axis and length/cm on x-axis R changing and not constant		1	3.5.1.3 AO2
	Graph will be an inverse of shape of paper – when area is large, resistance is		1	
	small and vice versa		1	
06.2	Resistivity is constant for a material Resistance depends on the length/cross-sectional area/resistivity of the sample		1 1	3.5.1.3 AO2
06.3	$\frac{V}{V}$		- 1	3.5.1.1
	Measurements of p.d. and current can be used to determine resistance or $R = \frac{1}{I}$		-	3.5.1.3
				AO1
06.4	Any sensible suggestions:		1	3.5.1.3
	would have concentration of water lower resistance/changes in water content		1	AU3
	would show up/broken crockery may change resistivity of soil			
07.1	Diode /LED		1	3.5.1.2
	The component only conducts once you are above the threshold voltage/a certain voltage/2.6V		1	AO1
07.2	Circuit diagram using either a potential divider arrangement or a variable resistor		1	ATg
	Voltmeter in parallel and ammeter in series with component Correct diode symbol used with correct orientation		1 1	AO2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.3	Infinite/allow very large		1	3.5.1.2
				3.5.1.1 AO1
07.4	Use of $R = \frac{V}{r}$		1	3.5.1.1
	$R = \frac{V}{I}$	Ignore powers of 10 for this mark	1	AO2
	$R = \frac{4}{0.020 \mathrm{A}} = 200 \Omega$			
08.1	$E_{\rm k} = \frac{1}{2} m v^2$: 20 keV = 20 000 × 1.6×10 ⁻¹⁹ C = 3.2×10 ⁻¹⁵ J	Either statement for this mark	1	3.4.1.8
	$\frac{1}{2}mv^2 = 3.2 \times 10^{-15}$			3.2.2.2 AO3
	$\frac{2}{v^2} = \frac{2 \times 3.2 \times 10^{-15}}{2}$		1	
	9.11 × 10 ⁻³¹ $y = 8.4 \times 10^7 \text{ m s}^{-1}$			
08.2	$d = d = d = 1.22 \times 10^8 \text{ m}$		1	3413
	$v = - \text{ and } a = 4.22 \times 10^{\circ} \text{ m}$		1	AO2
	$t = \frac{4.22 \times 10^3}{8.4 \times 10^7} = 5.0 \mathrm{s}$			
08.3	Q = It		1	3.5.1.1
	$ne = 3 \times 10^{6} \text{ A} \times 1$			AO2
	$n = \frac{3 \times 10}{1.6 \times 10^{-19}}$		1	
	$n = 1.9 \times 10^{25}$			
08.4	From Jupiter to lo		1	AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

03/12/20 11:51 AM

۲

OXFORD Revise

Skills box answers

۲

Question	Answer
1(a)	0.34 mm
1(b)	0.37 mm
2(a)	The reading of 0.351 mm is anomalous, and may have been written incorrectly. Ideally this measurement should be retaken. However, to calculate the mean, this value is discarded. The mean is $\frac{(0.314 + 0.315 + 0.316 + 0.315)}{4} = 0.315 \text{ mm}.$
2(b)	area = $\pi \frac{(0.315 \times 10^{-3})^2}{4} = 7.79 \times 10^{-8} \mathrm{m}^2.$
3	Turn the barrel of the micrometer until the jaws are closed. At this point the scale should be on zero. If not, then there is a zero error.

۲