

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	Young modulus = gradient $\frac{(1200 - 600) \times 10^{6}}{44 - 2.9} = \frac{600}{1.5}$	Evidence of conversion of strain to decimal Answer	1	2	3.4.2.2
	= 400 MPa		1		
01.2	Below 250% strain, the stiffness is increasing; above 250%, it is constant		1	2	3.4.2.2
01.3	Weight of car = 1200 kg × 9.8 N kg ⁻¹ = 117600 N Steel: yield stress is 250 MPa $\sigma = \frac{F}{A}$ $A = \frac{F}{\sigma} = \frac{11760}{250000000} = 7.2 \times 10^{-6} \text{ m}^2$ $d = 2\sqrt{\frac{A}{\pi}} = 2\sqrt{\frac{7.2 \times 10^{-6}}{\pi}} = 7.7 \times 10^{-3} \text{ m}$ Silk: yield stress is 1650 MPa $\sigma = \frac{F}{A}$ $A = \frac{F}{\sigma} = \frac{11760}{1650000000} = 4.7 \times 10^{-5} \text{ m}^2$	Manipulation of equations	1	2	3.4.2.2
	$d = 2\sqrt{\frac{A}{\pi}} = 2\sqrt{\frac{4.7 \times 10^{-5}}{\pi}} = 3.0 \times 10^{-3} \mathrm{m}$	Answers	1		
01.4	$\frac{1}{1000} = 1 \text{ m}$	Use a length or length cancels in	1	2	2421
01.4	Weight = mg , $m = \rho V = \rho \pi r^2 = \rho \pi \left(\frac{d}{2}\right)$	ratio at the end	T	2	3.4.2.1 3.4.2.2
	For steel: weight = $7800\pi \left(\frac{7.7 \times 10^{-3}}{2}\right)^{-1} \times 9.8 = 3.5 \text{ N}$ For silk: weight = $1300\pi \left(\frac{3.0 \times 10^{-3}}{2}\right)^{2} \times 9.8 = 0.09 \text{ N}$	correct use of weight and density equations Ratio	1		
	A steel cable has $\frac{1}{0.09}$ = 40 times the weight of a silk cable		1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.1	Using a vernier scale attached to the wire viewed through a microscope		1	1	WS
02.2	250 N = limit of proportionality 275 N = yield point		1 1	2	3.4.2.2
02.3	The cross-sectional area of the wire is decreasing/there is 'necking' of the wire So the Young modulus is calculated from the initial section where the area is constant because the values of stress plotted used that area		1 1	3	3.4.2.2
02.4	The material stretches beyond the yield point/shows plastic flow		1	2	3.4.2.2
02.5	³⁵⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴	Line with twice the gradient Line does not curve, stops abruptly	1	3	3.4.2.2

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
03.1/ 03.2/	9	03.1 Correct graph intersecting (40, 6)	1	2	3.4.2.2
03.4	7-	Straight line through origin	1		
		03.2 Curved line up to force of 8 N	1		
		Unloading curve parallel to loading curve	1		
	2 1 0 0 10 20 30 40 50 60 70 80 90 extension/mm	03.4 Line of twice the gradient going through (20, 6)	1		
03 3	1 1		1	2	3421
00.0	Energy = $\frac{-F\Delta l}{2} = \frac{-6 \times 40 \times 10^{-3}}{2} = 0.12 \text{ J}$		-	2	5. 1.2.1
03.4	For springs in parallel, the same force will produce half the extension		1	2	3.4.2.1
	Energy $=\frac{1}{2}F\Delta l = \frac{1}{2}6 \times 20 \times 10^{-3} = 0.06 \text{ J}$				
	The energy stored is halved		1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.1	Measure the original length of the spring (when it is taut but not stretched) Add known weight to the spring and find the new length, then subtract the	Measuring extension	1	1	3.4.2.1
	original length to find the extension Record length, force, and extension. Repeat and find the mean extension	Repeat measurements per length	1		
	Attach the weight to a higher point on the spring, and repeat to find the mean extension with the same weight	Changing length to give sufficient range	1		
	Use at least 6 different lengths	Calculating k	1		
	Calculate the spring constants using $k = \frac{F}{x}$ for each length	Correct axes for graph	1		
	Plot a graph of spring constant (y-axis) against length (x-axis)				2424
04.2	Bolids constant / M ⁻¹	Axes correctly labelled Correct shape (inverse relationship, do not allow straight line with negative)	1		3.4.2.1
04.3	As the length increases, the extension increases for the same force		1	1	3.4.2.1
	$k = \frac{F}{x}$, so the spring constant decreases		1		
04.4	strain = $\frac{\text{extension}}{\text{length}}$, so gives the proportion by which the sample extends for a given force		1	1	3.4.2.1
	Which is dependent on the material and not on the length of the sample.		1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.5	Example suggestion:		1	3	3.4.2.1
	stress = $\frac{\text{force}}{2\text{rea}}$, which could be modelled by having lots of springs in parallel		1		
	So the extension and spring constant depend on the number of springs for a given force, which is analogous to area		-		
05.1	Area = πr^2 = $\pi (0.11 \times 10^{-3})^2 = 3.8 \times 10^{-8} \text{ m}^2$	Calculation of area	1	2	3.4.2.2
	$\sigma = \frac{F}{1000} = \frac{36 \text{ N}}{100000000000000000000000000000000000$	Calculation of stress			
	$A 3.8 \times 10^{-8} \mathrm{m^2}$	Calculation of strain	1		
	Strain $\varepsilon = \frac{\Delta t}{l_0} = \frac{0.00}{3.6} = 0.18$	Answer	1		
	Young modulus = $\frac{\theta}{\varepsilon}$				
	$=\frac{9.5\times10^8\text{Pa}}{0.18}=5.2\times10^9\text{Pa}$		1		
05.2	Energy = $\frac{1}{F} F \Delta l = \frac{1}{36} \times 0.66 = 11.88 \text{ J}$	Calculation of energy	1	3	3.4.2.2
	$2^{-2} = 2^{-2}$ Mass of line $m = aV$	Calculation of mass	1		3.4.1.8
	$1.15 \mathrm{g}\mathrm{cm}^{-3} = 1150 \mathrm{kg}\mathrm{m}^{-3}$		T		
	So, $m = \rho V = 1150 \text{ kg m}^{-3} \times (3.8 \times 10^{-8} \text{ m}^2 \times 3.6 \text{ m}) = 1.57 \times 10^{-4} \text{ kg}$	Use of equation for kinetic energy			
	Assuming all of the energy stored is transferred to a kinetic energy store $1 - \sqrt{2E}$		1		
	$E = \frac{1}{2}mv^2 \text{ OR } v = \sqrt{\frac{2L}{m}}$		T		
	$=\sqrt{2 \times 11.88}$	Answer			
	$\sqrt{\frac{1.57 \times 10^{-4} \text{ kg}}{1.57 \times 10^{-4} \text{ kg}}}$		1		
	- 300 111 5 -				
05.3	If some energy is not transferred to the kinetic store, the speed would be smaller		1	3	3.4.2.1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO	Spec reference
05.4	If the weight is halved, the energy is halved Speed is proportional to \sqrt{E} , so the speed is reduced by $\frac{1}{\sqrt{2}}$		1 1	2	3.4.2.2 3.4.1.8
06.1	Material A because there will be a small strain for a large stress	Do not award marks for just <i>F</i> and <i>x</i> without stress/strain	1	2	3.4.1.1
06.2	Energy = area under graph by counting squares		1	2	3.4.2.1
	1 square = $1 \text{ N} \times 0.005 \text{ m} = 5 \times 10^{-3} \text{ J}$, 42 squares (approximately) 0.21 J Allow area of triangle approximation = $\frac{1}{2} \times 0.05 \times 8 = 0.20 \text{ J}$	Allow 40–44 squares	1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO	Spec reference
06.3	Mass of cord = density × volume = density × length × area = 1.15 g cm ⁻³ × 100 cm × π × (0.05 cm) ² = 0.2875 g = 2.9 × 10 ⁻⁴ kg Energy = $\frac{1}{2}mv^2$ $v = \sqrt{\frac{2E}{m}}$ = $\sqrt{\frac{2 \times 4.2 \times 10^{-3} \text{ J}}{2.2 \times 10^{-4} \text{ J}}}$	Use of density equation with consistent units	1 1	2	3.4.2.1 3.4.1.8
	$\sqrt{2.9 \times 10^{-4}}$ kg = 29(.3) m s ⁻¹		1		
06.4	$\left[\begin{array}{c} 9\\ 8\\ 7\\ 6\\ 7\\ 6\\ 9\\ 9\\ 9\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 7\\ 6\\ 7\\ 7\\ 6\\ 7\\ 7\\ 6\\ 7\\ 7\\ 6\\ 7\\ 7\\ 6\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	Approximately half the extension for each force Same shape	1	2	3.4.2.2
	0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 extension/m				

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
06.5	Initial gradient = $\frac{2 \text{ N}}{0.008 \text{ m}}$ = 250 N m ⁻¹		1	2	3.4.2.2
	Young modulus = $\frac{\sigma}{\varepsilon} = \frac{\left(\frac{F}{A}\right)}{\left(\frac{x}{l}\right)} = \left(\frac{F}{x}\right)\left(\frac{l}{A}\right)$ = $\frac{250}{\pi (0.005)^2}$ = $3.2(3.183) \times 10^6 \mathrm{N m^{-2}}$		1		
06.6	In equilibrium: $R_X + R_Y = m_{total}g$ $R_X + R_Y = (0.1 + 0.2 + 0.05) \times 9.81 = 3.43 \text{ N}$	Resolving forces vertically	1	2	3.4.1.2
	Clockwise moments about brick X: $0.1 \times 9.81 \times 0.45 + 0.2 \times 9.81 \times 0.55 + 0.05 \times 9.81 \times 0.5 = 0.441 + 1.08 + 0.245 = 1.77 \text{ N m}$	Taking moments	1		
	Anticlockwise moment = $1 \times R_Y$ $R_Y = 1.77 \text{ N}$ $R_X = 3.43 - 1.77 \text{ N} = 1.67 \text{ N}$	Answers (both forces correct)	1		
07.1	The (average +) diameter The extension for each increase in load	Alternative Plot load versus extension	1 1	2	3.4.2.2
	Plot stress = $\frac{load}{area}$ on the <i>y</i> -axis		1		
	Against strain = $\frac{\text{extension}}{\text{original length}}$ on the <i>x</i> -axis		1		
07.2	The strain will be too small/smaller than the actual value Calculated Young modulus will be larger than value calculated with correct measurement		1 1	2	3.4.2.2
07.3	Estimate of uncertainty = $\pm 2 \text{ mm}$ % uncertainty = $\frac{2 \times 10^{-3} \text{ m} \times 100}{60.0 \times 10^{-2} \text{ m}}$ = 0.3%	Accept values between 1 mm and 3 mm	1 1	1 2	3.1.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.4	Strain = 0.1×10^{-2}		1	2	3.4.2.2
	Stress = Young modulus × strain = 1.5×10^{11} Pa × $10^{-3} = 1.5 \times 10^{8}$ Pa = $\frac{F}{A} = \frac{1000 \text{ N}}{A}$		1		
	$A = \frac{1000 \text{ N}}{1.5 \times 10^8 \text{ Pa}} = 6.6 \times 10^{-3} \text{ m}^2$ Diameter = 3 × $\sqrt{\frac{6.6 \times 10^{-3} \text{ m}^2}{\pi}} = 1.5 \times 10^{-3} \text{ m}$		1		
07.5	The force is shared by two wires Maximum weight is 2000 N, so two people = 1400 N		1 1	3	3.4.2.2
07.6	$v^2 = u^2 + 2as$ Assuming acceleration is 9.81 m s ⁻² /no air resistance $v = \sqrt{2as}$ $v = \sqrt{2 \times 9.81 \times 12}$ =15(.3) m s ⁻¹	Correct assumption Use of equation of motion Answer to 2 d.p.	1 1 1	2	3.4.1.3
07.7	Lower The drop of paint will reach terminal velocity faster than the brush because the weight is less The brush will accelerate for a longer time reaching a larger speed		1 1 1		3.4.1.4

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO	Spec reference
08.1	Assume all the energy stored in the tendons is transferred to a gravitational potential energy store	Conservation of energy	1	2	3.1.4.8 3.4.2.2
	$\frac{1}{2}F\Delta l = mgh$	Substitution for F	1		
	And $F = kx$, so $mgh = \frac{-kx^2}{2}$ So $k = \frac{2 mgh}{2}$	Estimation of extension (based on size of frog)			
	Estimation of extension of tendon = 1 mm		1		
	Assume height = $10 \times 0.02 \text{ m} = 0.2 \text{ m}$ $k = \frac{2 \times 7 \times 10^{-6} \times 9.81 \times 0.2}{(10^{-3})^2}$	Calculation	1		
	$(10^{-5})^2$ = 27(.44) N m ⁻¹				
08.2	rubber band	Straight-line graph labelled spring	1	1	3.4.2.1
		Curved-line graph labelled rubber	1		
	spring	Line labelled polythene	1		
	polythene strip				
08.3	Rubber bands		1	3	3.4.2.1
	They are not permanently deformed when the load is removed		1		
08.4	$h = \frac{kx^2}{2mg}$		1	2	3.4.2.2
	The mass of the human is much bigger $\left(\frac{70 \text{ Kg}}{7 \text{ g}} = 10^4\right)$, so either the extension	Credit for any reason showing	1		
	of the tendon would have to be 100 times bigger, or the tendons would need to be 10 000 times stiffer to produce the same height	used in part 04.1			

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO	Spec reference
08.5	Energy stored = $mgh = \frac{1}{2}kx^2$, mass of human ~70 kg $x = \sqrt{\frac{2 mgh}{k}}$ $x = \sqrt{\frac{2 \times 70 \times 9.81 \times 1.5}{27}}$ x = 8.7 m The springs in the robot must have springs that are much stiffer than these	Use of conservation of energy Answer	1	3	3.1.4.8 3.4.2.2
	of the tendon	Sensible comment	T		
08.6	Power = $\frac{\text{energy}}{\text{time}}$ = $\frac{mgh}{\text{time}}$ = $\frac{70 \times 9.81 \times 1.5}{1.2}$ = 860(858) W Which is about the same power as a microwave oven	Answer Comment	1 1	2	3.4.1.7

۲

۲

Skills box answers

۲

Question	Answer
1	
	$\frac{L}{A} \times \text{gradient}$
	$E = \frac{2.82 \text{ m}}{(0.22 \times 10^{-3})^2 - 2 \times 10^{-2} \text{ m}^2} = 1.25 \times 10^{11} \text{ Pa}$
	$\pi \left(\frac{0.32 \times 10}{2}\right)^2 \text{m}^2 \times 0.281 \times 10^{-3} \text{m} \text{N}^{-1}$
	% uc in gradient = $\frac{(0.315 - 0.281) \times 10^{-3} \text{ m N}^{-1}}{0.201 \times 10^{-3} \text{ m N}^{-1}} \times 100\% = 12.1\%$
	$0.281 \times 10^{-5} \text{mN}^{-1}$
	% uc in diameter = $\frac{0.011111}{0.32 \text{ mm}} \times 100\% = 3.1\%$
	%uc in area = 2 × 3.1% = 6.2 %
	% uc in length = $\frac{0.01 \text{ m}}{2.82 \text{ m}} \times 100\% = 0.35\%$
	therefore % uc in $E = (12.1 + 6.2 + 0.35)\% = 18.7\%$
	uc in $E = 18.7\%$ of 1.25×10^{11} Pa = $\pm 0.23 \times 10^{11}$ Pa
	so $E = 1.3 \times 10^{11} \text{ Pa} \pm 0.2 \times 10^{11} \text{ Pa}$
2	The elastic limit has been exceeded. The wire has not returned to its original length on removing the load.
3	Rearranging the equation for the Young modulus to obtain the equation of a straight line $(y = mx + c)$ gives $F = \left(\frac{AE}{l}\right)e$.
	The gradient is therefore equal to $\frac{l}{l}$.

۲

