A Level AQA Physics
4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	2.8 cm		1	2	3.3.1.1
01.2	$\begin{aligned} & \lambda=2.8 \mathrm{~cm} \quad c=8.4 \mathrm{~cm} \mathrm{~s}^{-1} \\ & c=f \lambda \\ & f=\frac{c}{\lambda}=\frac{8.4}{2.8}=3 \mathrm{~Hz} \end{aligned}$	Allow e.c.f. for λ answer from 01.1	1	2	3.3.1.1
01.3	$\frac{\pi}{2} \mathrm{rad}$ or 90°	1 mark for phase difference, 1 mark for units	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2 1	3.3.1.1
01.4	Displacement will be negative (downwards) to max in $\frac{T}{4} \mathrm{~s}$ Decreases through to zero displacement at $\frac{T}{2} \mathrm{~s}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.1.1
02.1	Double-ended arrow/line from between two points in phase		1	1	3.3.1.1
02.2	Maximum displacement From the equilibrium position (from rest position/mean position)		1	1	3.3.1.1
02.3	Longitudinal wave Spring oscillates in a direction parallel to/in energy transfer OR because of compressions and rarefactions	Rarefaction must be spelt correctly for second mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.1.2
02.4	Stationary wave formed By superposition (or interference) (of two progressive waves) Stationary points are nodes Destructive interference where the spring is stationary	Max of 3 marks awarded	$\max 3$	2	3.3.1.3
03.1	With unpolarised light, the vibrations are in many planes In plane polarised light, the oscillations are in one plane only	ignore 'direction'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.3.1.2
03.2	Reflected light is polarised So intensity of light reflected on water will be reduced by polarising filter		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.1.2

A Level AQA Physics
4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
03.3	Rotate the polarising filter through $180^{\circ} / 360^{\circ}$ Variation in intensity between max and min (or light and dark) One maxima and min in 180° OR two maxima (or two minima) in 360° rotation		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.3.1.2
03.4	Sound waves are longitudinal waves Since oscillations are parallel to/same direction as wave travel, they cannot be polarised		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.1.2
03.5	Sketch: - showing ray of light reflected away from the normal as it leaves the water - straight line drawn showing where ray appears to come from person's perspective Explanation that change of speed at boundary causes refraction	Max 2 marks for two rays drawn and 1 mark for explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.3.2.3
04.1	Reflection from metal plate Two waves of the same frequency/wavelength travelling in opposite directions (or forward/reflected waves) Maxima where waves are in phase or interfere constructively Minima where waves are out of phase/antiphase or interfere destructively Nodes and antinodes or stationary waves identified	Any three awarded	$\max 3$	2	3.3.1.3
04.2	Distance between minima is $\frac{\lambda}{2}$ $\begin{aligned} & 4 \times \frac{\lambda}{2}=54 \mathrm{~mm} \\ & \lambda=27 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	$\begin{aligned} & 3.3 .1 .3 \\ & 3.3 .1 .1 \end{aligned}$
04.3	$\begin{aligned} & c=f \lambda \text { and } c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & f=\frac{c}{\lambda}=\frac{3.0 \times 10^{8}}{27 \times 10^{-3}}=1.1 \times 10^{10} \mathrm{~Hz} \\ & 11 \mathrm{GHz} \end{aligned}$	Allow e.c.f. from 04.2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	$\begin{gathered} 3.3 .1 .3 \\ 3.3 .1 .1 \\ 3.1 .1 \end{gathered}$
04.4	P labelled close to the plate in direct line with transmitter		1	1	3.3.1.3

A Level AQA Physics

4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
04.5	The distance travelled by the transmitted wave and the reflected wave is similar at point \mathbf{P} The amplitude of both waves will be similar Max destructive interference	Max of two points	$\max 2$	2	3.3.1.3
04.6	The microwave transmitter produces plane polarised waves and so the detector must be in the correct plane		1	3	3.3.1.2
05.1	Stationary waves set up in the microwave Microwaves are reflected in the oven Two waves of the same frequency/wavelength travelling in opposite directions (or forward/reflected waves) Melted marshmallows are where waves are in phase or interfere constructively The melted marshmallows are at an antinode	Any three from	$\max 3$	2	3.3.1.3
05.2	$\begin{aligned} & c=f \lambda \text { and } c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & \lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{2450 \times 10^{6}}=0.122 \mathrm{~m} \end{aligned}$ Distance between minima is $\frac{\lambda}{2}$ $=0.061 \mathrm{~m}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	2	$\begin{gathered} 3.3 .1 .1 \\ 3.3 .1 .3 \\ 3.1 .1 \end{gathered}$
05.3	$\begin{aligned} & c=f \lambda=2450 \times 10^{6} \times 0.142 \mathrm{~m}=3.48 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & \% \text { error }=\frac{\text { difference }}{\text { actual }} \times 100 \% \\ & \% \text { error }=\frac{4.8 \times 10^{7}}{3.0 \times 10^{8}} \times 100 \%=16 \% \end{aligned}$	Allow e.c.f. from value of c	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	$\begin{gathered} \text { 3.3.1.3 } \\ 3.1 .2 \end{gathered}$
05.4	They would have to remove/disable the turntable so that marshmallows were stationary		1	3	

A Level AQA Physics

4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
05.5	In a progressive wave, all particles vibrate at same frequency AND in a stationary wave, all particles except those at nodes vibrate at same frequency In a progressive wave, all particles have same amplitude AND in stationary waves, particles vary in amplitude from zero at nodes to max at antinodes In progressive waves, the phase difference between particles $=\frac{2 \pi d}{\lambda}$, where d is the distance apart AND in stationary waves, phase difference $=n \pi$, where n is the number of nodes between the particles	Each statement must compare stationary and progressive waves 2 marks maximum for each property compared Two properties compared for maximum marks	$\max 4$	2	3.3.1
06.1	Waves travel to the boundaries and are reflected Two waves travelling in opposite directions interfere/superpose Antinodes or maxima where waves are in phase or interfere constructively OR Nodes/minima where waves are out of phase/antiphase or interfere destructively Nodes form at fixed ends	NOT bounces off	$\max 3$	1	3.3.1.3
06.2	$\begin{aligned} & \lambda=0.62 \times 2=1.24 \mathrm{~m} \\ & c=f \lambda=82.41 \times 1.24=102 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.1.1
06.3	$f=\frac{c}{\lambda}=\frac{102}{0.62} 165 \mathrm{~Hz}$	Allow e.c.f. from 06.2	1	2	3.3.1.1
06.4	$\begin{aligned} & \text { Use of } f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}} \\ & f^{2} \propto \frac{1}{\mu} \\ & f^{2} \mu=\text { constant }=82.41^{2} \times 6.44 \times 10^{-3} \\ & \text { New } \mu=\frac{82.41^{2} \times 6.44 \times 10^{-3}}{196^{2}} 1.14 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \end{aligned}$	Alternatively, they could work out T from initial info and calculate	1 1	3	3.3.1.3
07.1	3rd/third harmonic		1	1	3.3.1.3

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics
 4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.2	P antinode AND constructive interference/in phase Q node AND destructive interference/out of phase	Need name and description for each mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.3.1.3
07.3	\mathbf{P} has positive amplitude and \mathbf{Q} negative \mathbf{P} and \mathbf{Q} are π rad or 180° out of phase		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 3.3 .1 .3 \\ & 3.3 .1 .1 \end{aligned}$
07.4	$\begin{aligned} & \lambda=\frac{2}{3} L=0.80 \mathrm{~m} \\ & c=f \lambda \\ & f=\frac{c}{\lambda}=\frac{13.6}{0.80}=17 \mathrm{~Hz} \end{aligned}$		1 1	2	$\begin{aligned} & 3.3 .1 .1 \\ & \text { 3.3.1.3 } \end{aligned}$
07.5	6 th harmonic sketched - expect to see 6 antinodes and 7 nodes		1	2	3.3.1.3
08.1	$\begin{aligned} & 80(\mathrm{~ms}) \\ & f=\frac{1}{T}=12.5 \mathrm{~Hz} \\ & f^{2}=156 \mathrm{~Hz} \end{aligned}$	Answer in table row should be completed	1 1	2	3.3.1.1
08.2	$\begin{aligned} & T=m g \\ & f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}=\frac{1}{2 l} \sqrt{\frac{m g}{\mu}} \\ & f^{2}=\frac{1}{4 l^{2}} \times \frac{m g}{\mu} \end{aligned}$ Since l, g, and μ are constant $f^{2} \propto m$		1 1 1	2	3.3.1.3
08.3	Mark for plotting point $\pm \frac{1}{2}$ square on graph Mark for drawing line of best fit Large triangle drawn or evidence shown $1.2 \pm 0.1\left(\mathrm{~g} \mathrm{~Hz}^{-2}\right)$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2	MS 3.2, 3.3, 3.4

A Level AQA Physics
 4 Progressive and stationary waves - answers

Question	Answers	Extra information	Mark	AO	Spec reference
08.4	$\begin{aligned} & \text { Gradient }=\frac{g}{4 l^{2} \mu} \\ & \mu=\frac{9.81}{4 \times 1^{2} \times 1.2} \\ & 2.0 \mathrm{~g} \mathrm{~m}^{-1} \end{aligned}$	e.c.f.	1 1	2	3.3.1.3
08.5	$\begin{aligned} & \text { \% uncertainty in length }=\frac{0.001}{1.000} \times 100 \%=0.1 \% \\ & \text { OR } \% \text { uncertainty in mass }=\frac{0.1}{1.7} \times 100 \%=5.9 \% \\ & \text { total } \% \text { error }=6.0 \% \\ & \text { absolute error }=0.06 \times 1.7= \pm 0.1 \mathrm{gm}^{-1} \end{aligned}$	1 mark for calculating either \% uncertainty	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.1.2
08.6	$\begin{aligned} & \% \text { difference }=\frac{\text { difference }}{\text { actual }} \times 100 \% \\ & \% \text { difference }=\frac{0.3}{1.7} \times 100 \%=18 \% \end{aligned}$	Possible e.c.f. from their value for 08.4	1	2	3.1.2

Skills box answers

Question	Answer
$\mathbf{1}$	Wear goggles in case the wire snaps. Place a box containing padding material below the masses in case they fall.
$\mathbf{2}$	Set up the apparatus as shown in the diagram. Record values of f for different values of l. Change the length in the string by moving the vibrator closer to the pulley. $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$, therefore plot a graph of l against \sqrt{T}, will produce a straight line through the origin, confirming the relationship between l and T.
$\mathbf{3}$	The gradient of the graph $=\frac{1}{\left(4 l^{2} \mu\right)}$, so $\mu=\left(4 l^{2} \text { gradient }\right)^{-1}$

