

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	Time for one sample = $\frac{1}{500}$ = 0.002 s	Time for one sample correct Remaining points plotted correctly	1 1	2	3.13.2.1
	Junit Junit <td< td=""><td></td><td></td><td></td><td></td></td<>				
01.2	The sampling rate is too low and high-frequency sections of the signal will be lost There will be aliasing (spurious low signals)		1 1	2	3.13.2.1
01.3	Number of samples = 3 × 60 × 500 = 90 000 Bits per sample = 4 Total number of bits = 360 000 Number of bytes = 45 000 B = 45 kB	Number of samples Number of bits Answer	1 1 1	2	3.13.2.1
01.4	Increase the bits per sample The song would increase the storage space required/take longer to send/download		1 1	2	3.13.2.1
01.5	The output of the ADC is in parallel form because each sample contains 4 (simultaneous) bits These bits have to be converted to a serial stream in order to be sent		1	1	3.13.2.1

۲

© Oxford University Press www.oxfordsecondary.com

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.1	Circuit with capacitor and inductor in parallel Aerial and earth connected at opposite points		1 1	1	3.13.2.2
02.2	$f_{0} = \frac{1}{2\pi\sqrt{LC}}$ $C = \frac{1}{(2\pi f_{0})^{2}L}$ $= \frac{1}{(2\pi \times 1.1 \times 10^{6})^{2} \times 2.3 \times 10^{-3}}$ $= 9.1 \times 10^{-12} \text{ F} = 9.1 \text{ pF}$ Capacitor A would work	Substitution Answer Capacitor identified	1 1 1	2	3.13.2.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

03/12/20 12:56 PM

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.3	Answers $Q = \frac{f_0}{f_B}$ $f_B = \frac{f_0}{Q} = \frac{1100000}{50}$ $= 22000Hz = 22kHz$ so the peak at 0.7 is 22 kHz wide $1^{0.9}_{0.8}_{-1}^{-1}_{0.6}_{0.7}^{-1}_{0.6}_{0.6}^{-1}_{0.6}^{-1}_{$	Extra information Bandwidth Peak at 1100 and 1.0 relative gain 22 kHz wide at 0.71 relative gain Approximate shape	Mark 1 1 1 1 1	AO 2	Spec reference 3.13.2.2
	0.3 0.2 0.1 0 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 frequency/kHz				

۲

۲

۲

Question		Answers		Extra information	Mark	AO	Spec reference
02.4		k scheme gives some guidance as to v en in a 1 or 2 mark (L1), 3 or 4 mark (L1		The following statements are likely to be present:	6	1	3.13.2.2
	Mark	Criteria	QoWC	Bullet point 1 in question (Analogy between components)			
	6	A thorough and well-communicated discussion using most of the statements in bullets 1 and 2	The student presents relevant information coherently, employing	 The mass is analogous to the inductance The spring constant is 1 			
	5	An explanation that includes discussion using most of the statements in bullets 1 and 2 but may contain minor errors or omissions	The text is legible	 analogous to 1/(capacitance) 3. Energy can be stored in the mass-spring system, and in the <i>LC</i> system 4. The mass-spring system 			
	4 <u>The response includes a well-</u> <u>presented</u> discussion of two from bullets 1 and two from bullet 2 and one from bullet 2	The student presents relevant information and in a way which assists the communication of meaning. The text is legible.	 oscillates with a characteristic/ natural frequency, and so does the <i>LC</i> circuit 5. Energy can be transferred more easily at low frequencies, but 				
	3	<u>The response includes a</u> discussion of one comment from each bullet	relevant information in a simple form. The text is usually legible. SP&G allow meaning to be derived although errors	there is increasing resistance to motion as the acceleration, which is analogous to the <i>LC</i> circuit Bullet point 2 in question (Explaining resonant frequency) 5. For a mass–spring system, the time period is $T = 2\pi \sqrt{\frac{m}{T}}$ so in			
	2	<u>The response</u> makes comments about two bullet points (This is likely to be from bullets 2 and 3)					
	1	Makes relevant comment from the list		the <i>LC</i> circuit $T = 2\pi\sqrt{LC}$ 6. $f = \frac{1}{T}$, so $f = \frac{1}{2\pi\sqrt{LC}}$			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Answers		Extra information	Mark	AO	Spec reference
	0	No relevant coverage of the likely statements	 7. When a mass-spring system is forced to oscillate at its natural frequency, it will resonate, so an <i>LC</i> circuit will oscillate when an alternating pd at the natural frequency is applied 8. In a mass-spring system, energy is transferred between being stored kinetically and being stored potentially. In an <i>LC</i> circuit, energy is transferred from being stored in the electric field in the capacitor and the magnetic field of the inductor 				
03.1	and n The g	utput depends on the difference betw on-inverting input ain of a comparator is infinite, but the ntrolled by the values of the resistors o		1 1	1	3.13.4.2	
03.2		operational amplifier was being used d be ±24 V, and not values in between		1	2	3.13.4.2	
03.3		$= \frac{V_{\text{out}}}{V_+ - V} = 4 = \frac{R_f}{R_{\text{in}}}$ $4 \times 10 \text{k}\Omega = 40 \text{k}\Omega$		1 1	2	3.13.4.3	
03.4	the sa Becau be an The o the sig	hird electrode ensures that the 'noise' ame for each electrode use the amplifier is amplifying the diffe nplified nly p.d. that is amplified is that produc gnals produced by the electrodes, mal ilarities in heart rhythms		1 1 1	3	3.13.4.3	

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.1	1101	Do not accept 1011	1	2	3.13.2.1
04.2	$V_{\text{out}} = -10000 \times \left(\frac{5}{10000} + \frac{5}{20000} + \frac{0}{40000} + \frac{5}{80000}\right)$ = -8.125 V	Substitution Answer (must be negative)	1 1		3.13.4.3
04.3	Connect the output to an inverting amplifier to change to a positive value $\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{13}{-8.125} = -1.6$ $-\frac{R_{\text{f}}}{R_{\text{in}}} = -1.6$ $R_{\text{in}} = \frac{R_{\text{f}}}{1.6} = \frac{10 \text{k}\Omega}{1.6} = 6.25 \text{k}\Omega$	Change to positive Substitution Answer	1 1 1	3	3.13.4.1
04.4	Left-hand end of $R_{\rm f}$ is connected to virtual earth/inverting input is at 0V Current in the feedback resistor is the same as the current in the input resistor/ $I_{R_{\rm f}} = I_{R_{\rm in}}$		1 1	1	3.13.4.1
05.1	$(A \cdot \overline{B}) + (C)$		1		3.13.5.1
05.2		A and NOT B into AND gate Output and C into OR gate	1 1	3	3.13.5.1

۲

۲

۲

Question					Answ	ers		Extra information	Mark	AO	Spec reference
05.3	Α	В	С	D	Е	F		Column D correct 1 mark	Max 3	3	3.13.5.1
	0	0	0	1	0	0		Column E correct 1 mark			
	0	1	0	0	0	0					
	1	0	0	1	1	1		Column F correct 1 mark			
	1	1	0	0	0	0					
	0	0	1	1	0	1					
	0	1	1	0	0	1					
	1	0	1	1	1	1					
	1	1	1	0	0	1					
05.4	A BCD counter The output of the logic circuit triggers the counter to start The carry-out is used to input a circuit operating a switch to open the door				1 1	3	3.13.5.2				
06.1	Power supply, resistor, and capacitor in series Voltmeter across the capacitor				1 1	2	3.7.4.4				
06.2		Time constant = RC = approximately 2–5 seconds Capacitance = 6 – 15×10 ⁻⁶ F, or 6–16 μ F				1 1	2	3.7.4.4			
06.3	The tim Clock ra	The time for the lights to be on and off $t_p = \frac{10}{4} = 2.5 \text{ s}$ Clock rate $= \frac{1}{t_p} = \frac{1}{2.5} = 0.4 \text{ Hz}$				1 1 1	2	3.13.5.3			
	Duratio	n that th	e lights	are on =	1.25 s				1		
	Duty cy	$cle = \frac{t_{on}}{t_p}$	× 100 =	50%							
06.4	The clo	The clock rate = $\frac{1}{\text{period}}$, so $1.3 RC = \frac{1}{0.4} = 2.5 s$				1 1	3	3.13.5.3			
	$C = \frac{1.3}{1.3}$	2.5 × 330 000	- -= 5.8(7	′)×10 ^{−6} F							

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.1	The original length, the cross-sectional area The extension for different loads/forces applied to the wire		1 1	1	3.4.2.2
	Calculate the strain = $\frac{\text{extension}}{\text{original length}}$ for each force		1		
	Calculate the stress = $\frac{\text{force}}{\text{cross-sectional area}}$ for each force		1 1		
	Plot a graph of stress (y-axis) against strain (x-axis) The gradient of the initial linear portion of the graph is the Young modulus		1		
07.2	The output voltage is zero when there is no difference between the inputs to the operational amplifier		1	3	3.5.1.5 3.13.4.3
	This happens when the potentials at P and Q are the same		1		
	P and Q are each the centre point of a potential divider, so they are at the same potential when the resistance of the wire is equal to the resistance of the variable resistor		1		
07.3	$V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_{\rm in}}$	Substitution	1	2	3.13.4.3
	$V_{\text{out}} = (V_{+} - V_{-}) \frac{R_{\text{f}}}{R_{\text{in}}}$ $(V_{+} - V_{-}) = \frac{R_{\text{in}}}{R_{\text{f}}} V_{\text{out}} = \frac{10 \text{k}\Omega}{410 \text{k}\Omega} \times 12.5$ $= 0.305 \text{V}$	Answer	1		
07.4	The new potential at Q = 5.688 + 0.305 = 5.993 V	New potential at Q	1	3	3.5.1.5
	$\frac{50}{50+R} \times 6 = 5.993$	Resistance now	1		
	$R = 0.056 \Omega$ 50				
	$R = 0.056 \Omega$ Original resistance = $\frac{50}{50 + R} \times 6 = 5.688$ $R = 2.743 \Omega$	Resistance before Change	1 1		
	Change in resistance = 2.743 – 0.056 = 2.687 Ω		÷		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
08.1	The pressure due to the sound wave produces a force that moves the (diaphragm and) coil in and out The magnetic flux that the coil cuts changes and induces a p.d. that matches the sound wave		1 1	1	3.7.5.4
08.2	Transmitting device: laser/infrared LED Transmission path: optical fibre Receiving device: photodiode This is more secure than copper wire/free space (electromagnetic waves)		1 1 1 1	2	3.13.6.1 3.13.6.2
08.3	The signal travels long distances and the satellites have only a certain amount of electrical power, so the down-link signals received require much amplification The up-link transmission frequency must be different from the down-link frequency to prevent the high-power down-link signal from the satellite from overwhelming the weak up-link signal This would de-sensitise the high-gain up-link receiver		1 1 1	1	3.13.6.2
08.4	$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1548 \times 10^3} = 193 \text{ m} \approx 200 \text{ m}$ Yes, there is appreciable diffraction when the wavelength approximately equals the diameter/size of the obstacle		1	2	3.3.1.1 3.3.2.2
08.5	Speech and music on the AM radio band have a frequency range of 4 kHz There is a range of side frequencies/sidebands about the carrier frequency and there has to be a gap between them The bandwidth for AM = $2 \times f_m$ where f_m = the maximum frequency in the signal, which here is 4 kHz, so the spacing is a minimum of 8 kHz		1 1 1	3	3.13.6.4

۲

© Oxford University Press www.oxfordsecondary.com

۲

Skills box answers

۲

Question	Answer
1	$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{8.0 \times 1.2 \times 10^{-6})}} = 51 \text{Hz}$
2	$C = \left(\frac{1}{L}\right) \times \left(\frac{1}{2\pi f_0}\right)^2 = \left(\frac{1}{0.100}\right) \times \left(\frac{1}{320\pi}\right)^2 = 10\mu\text{F}$
3	$L = \left(\frac{1}{C}\right) \times \left(\frac{1}{2\pi f_0}\right)^2 = \left(\frac{1}{1.0 \times 10^{-6}}\right) \times \left(\frac{1}{8.2 \times 10^3 \pi}\right)^2 = 1.5 \mathrm{mH}$

۲

© Oxford University Press www.oxfordsecondary.com