A Level AQA Physics

29 Discrete semi-conductor devices - answers

\square

Question	Answers	Extra information	Mark	AO Spec reference
1.1	Gate, drain, and source all correctly labelled		1	$\begin{aligned} & \text { 3.13.1.1 } \\ & \text { AO1 } \end{aligned}$
1.2	Has very high input impedance/resistance No loading of logic gate output		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.1 } \\ & \text { AO1 } \end{aligned}$
1.3	MOSFET can easily become charged and switch on - the resistor prevents this/ keeps gate at 0 when no input		1	$\begin{aligned} & \text { 3.13.1.1 } \\ & \text { AO1 } \end{aligned}$
1.4	Diode An induced e.m.f. is created when a motor is switched on or off Without diode this would destroy MOSFET		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3.13.1.1 AO1 AO2 $\times 2$
2.1	2.2 V is min p.d. across gate and source to form a channel between drain and source/gate voltage when the transistor is just switched off		1	$\begin{aligned} & \text { 3.13.1.1 } \\ & \text { AO1 } \end{aligned}$
2.2	Resistance increases as light intensity decreases Potential difference across the LDR increases Until threshold voltage achieved/current flows between drain and source and LED switched on		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 .5 \\ & \text { 3.13.1.1 } \\ & \text { AO2 } \end{aligned}$
2.3	$\begin{aligned} & \text { p.d. across } R=6-2.2=3.8 \mathrm{~V} \\ & \frac{R}{3.8}=\frac{100000}{2.2} \\ & R=100000 \times \frac{3.8}{2.2} \\ & R=170 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 .1 .5 \\ & \text { 3.13.1.1 } \\ & \text { AO2 } \end{aligned}$

A Level AQA Physics

29 Discrete semi-conductor devices - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
3.1	Max 4 marks from: - Behaviour in forward bias direction same/same threshold voltage and then low resistance - Diode has large breakdown voltage/zener diodes have low breakdown voltages - Diode breaks if breakdown voltage exceeded/voltage across zener/zener voltage remains constant even when current exceeded - Reverse current of zener remains constant/at least 5 mA until breakdown voltage applied	Must have similarities and differences for full marks	max 4	$\begin{aligned} & \text { 3.13.1.2 } \\ & \text { AO2 } \end{aligned}$
3.2	Correct symbol drawn Arrow pointing up		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.2 } \\ & \text { AO1 } \end{aligned}$
3.3	$\begin{aligned} P & =V I \\ I & =\frac{P}{V}=\frac{1.3}{4.3}=0.30 \mathrm{~A} \end{aligned}$		1	3.5.1.4 3.13.1.2 AO1
3.4	$\begin{aligned} & V=9-4.3=4.7 \mathrm{~V} \\ & V=I R \\ & R=\frac{4.7}{0.3}=16 \Omega \end{aligned}$		1 1	$\begin{aligned} & \text { 3.5.1.1 } \\ & 3.13 .1 .2 \\ & \text { AO2 } \end{aligned}$
4.1	In parallel with zener diode so $\mathrm{pd}=4.7 \mathrm{~V}$ $I=\frac{V}{R}=\frac{4.7}{440}=0.011 \mathrm{~A}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.2 } \\ & 3.5 .1 .1 \\ & \text { AO2 } \end{aligned}$
4.2	$\begin{aligned} & \text { p.d. }=10-4.7=5.3 \mathrm{~V} \\ & I=\frac{V}{R}=\frac{5.3}{120}=0.044 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.2 } \\ & 3.5 .1 .1 \\ & \text { AO2 } \end{aligned}$
4.3	$I_{\mathrm{Z}}=0.044-0.011=0.033 \mathrm{~A}$		1	$\begin{aligned} & \text { 3.13.1.2 } \\ & \text { 3.5.1.4 } \\ & \text { AO1 } \end{aligned}$

A Level AQA Physics

29 Discrete semi-conductor devices - answers

Question	Answers	Extra information	Mark	AO Spec reference
4.4	$P=I V=0.033 \mathrm{~A} \times 4.7=0.16 \mathrm{~W}<0.25 \mathrm{~W}$ Use 250 mW zener diode		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.2 } \\ & 3.5 .1 .4 \\ & \text { AO2 } \end{aligned}$
5.1	Reverse		1	$\begin{aligned} & \text { 3.13.1.3 } \\ & \text { AO1 } \end{aligned}$
5.2	Inverted parabola Peak at 850 nm Scale from 550 nm (min) to 1150 nm (max)	Ignore y-axis scale	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.3 } \\ & \text { AO1 } \end{aligned}$
5.3	$\begin{aligned} & \text { Power }=I \times \text { Area }=10 \times 1 \times 10^{-6} \mathrm{~m}^{2} \\ & \text { Current }=\text { sensitivity } \times \text { power }=0.62 \times 10 \times 1 \times 10^{-6} \\ & \text { Current }=6.2 \times 10^{-6} \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.3 } \\ & \text { 3.5.1.4 } \\ & \text { AO3 } \end{aligned}$
5.4	Max 4 marks from: - Photodiode in series with a resistor and a power supply - $V_{\text {out }}$ across the resistor - When it is dark, the current is negligible and there is no pd across resistor. No $V_{\text {out }}$ - When it is light, there is a current and hence a pd across the resistor - this is $V_{\text {out }}$ - Resistor chosen to provide suitable pd to activate alarm	All marks can be awarded for suitably labelled diagram	$\max 4$	$\begin{aligned} & 3.13 .1 .3 \\ & \text { AO3 } \end{aligned}$
6.1	Magnet placed on frame of set in line with hall effect sensor (allow vice versa) When the magnet is close to the sensor, voltage output is high/far from it, voltage output low Output fed to circuits for airbags/output amplified and input to circuits for airbags		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.13 .1 .4 \\ & \text { AO1 } \end{aligned}$
6.2	$\begin{aligned} & 3.5 \times 10^{-4} \mathrm{~T}=0.35 \mathrm{mT} \\ & V=9 \times 0.35=3.2 \mathrm{mV} \\ & 0.014 \mathrm{~T}=14 \mathrm{mT} \\ & V=9 \times 14=126 \mathrm{mV} \end{aligned}$		1 1	$\begin{aligned} & 3.13 .1 .4 \\ & \text { AO2 } \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

29 Discrete semi-conductor devices - answers

Question	Answers	Extra information	Mark	AO Spec reference
6.3	$\begin{aligned} & 0.065 \mathrm{mT} \\ & V=0.59 \mathrm{mV} \end{aligned}$ Too small to affect reading as this was max strength 20% of smallest value so would affect accuracy of output		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.4 } \\ & \text { AO2 } \end{aligned}$
7.1	As the magnet passes the sensor, it registers a voltage output The number of voltage outputs can be counted Using circumference of wheel, the distance can be measured/number of counts multiplied by distance of wheel		1 1 1	$\begin{aligned} & \text { 3.13.1.4 } \\ & \text { AO3 } \end{aligned}$
7.2	$\begin{aligned} & \text { Distance }=\pi \times D=\pi \times 0.05 \mathrm{~m} \\ & \text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{\pi \times 0.05 \mathrm{~m}}{6.5 \times 10^{-3}}=24 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.13.1.4 } \\ & \text { AO2 } \end{aligned}$
7.3	Have more magnets on disc/have a smaller radius disc	Allow any sensible suggestion here	1	$\begin{aligned} & \text { 3.13.1.4 } \\ & \text { AO3 } \end{aligned}$
8.1	Reverse		1	$\begin{aligned} & \text { 3.13.1.3 } \\ & \text { AO1 } \end{aligned}$
8.2	Leakage current when there is no/zero light intensity		1	$\begin{aligned} & \text { 3.13.1.3 } \\ & \text { AO1 } \end{aligned}$
8.3	$\begin{aligned} & \text { Current }=0.6 \mathrm{AW}^{-1} \times 0.2 \times 10^{-3} \mathrm{~W} \\ & \text { Current }=1.2 \times 10^{-4} \mathrm{~A} \end{aligned}$		1	$\begin{aligned} & 3.13 .1 .3 \\ & 3.5 .1 .4 \\ & \text { AO2 } \end{aligned}$
8.4	$\begin{aligned} & \text { p.d. across } R=I R=1.2 \times 10^{-4} \mathrm{~A} \times 5000 \Omega=0.6 \mathrm{~V} \\ & V_{\text {out }}=9.0-0.6=8.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.13 .1 .3 \\ & 3.5 .1 .1,3.5 .1 .4 \\ & \text { AO2 } \end{aligned}$

A Level AQA Physics

29 Discrete semi-conductor devices - answers

Skills box answers

Question	\quad Answer
$\mathbf{1}$	$I_{\max }=\frac{P}{V}=\frac{500 \times 10^{-3} \mathrm{~W}}{5.1 \mathrm{~V}}=0.10 \mathrm{~A}$
$\mathbf{2}$	$P=I V=10 \times 10^{-3} \mathrm{~A} \times 2.7 \mathrm{~V}=0.03 \mathrm{~W}$
$\mathbf{3}$	$R_{\min }=\frac{\left(V_{\mathrm{s}}-V_{z}\right)}{I_{\max }}=\frac{(12-10) \mathrm{V}}{100 \times 10^{-3} \mathrm{~A}}=20 \Omega$

